SITE ASSESSMENT REPORT CELOTEX SITE WILMINGTON, WILL COUNTY, ILLINOIS

TDD: S05-9802-002

EPA Region 5 Records Ctr.

356592

June 11, 1998

Prepared for:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Emergency Response Branch 77 West Jackson Boulevard Chicago, Illinois 60604

Prepared by:	Brendon P. M. Juna	Date: 4/11/98
	Brendan P. McLennan, START Project Manager	
Reviewed by:	Many J. Ripp	Date: 6/11/98
Approved by	Mary Jane Ripp, START Assistant Program Manager Thomas Kouris, START Program Manager	Date: 6/11/98

International Specialists in the Environment

33 North Dearborn Street, Chicago, Illinois 60602 Tel. 312/578-9243, Fax: 312/578-9345

Table of Contents

Section		<u>Page</u>
I	Introduction	1-1
2	Site Background	2-1
3	Site Assessment	3-1
4	Analytical Results	4-1
5	Threats to Human Health and the Environment	5-1
6	Summary	6-1
7	Cost Estimate	. 7-1
Appendix		<u>Page</u>
A	Photodocumentation	A-1
В	Analytical Data Package	. B-1
С	RCMS Cost Estimate	C-1

List of Figures

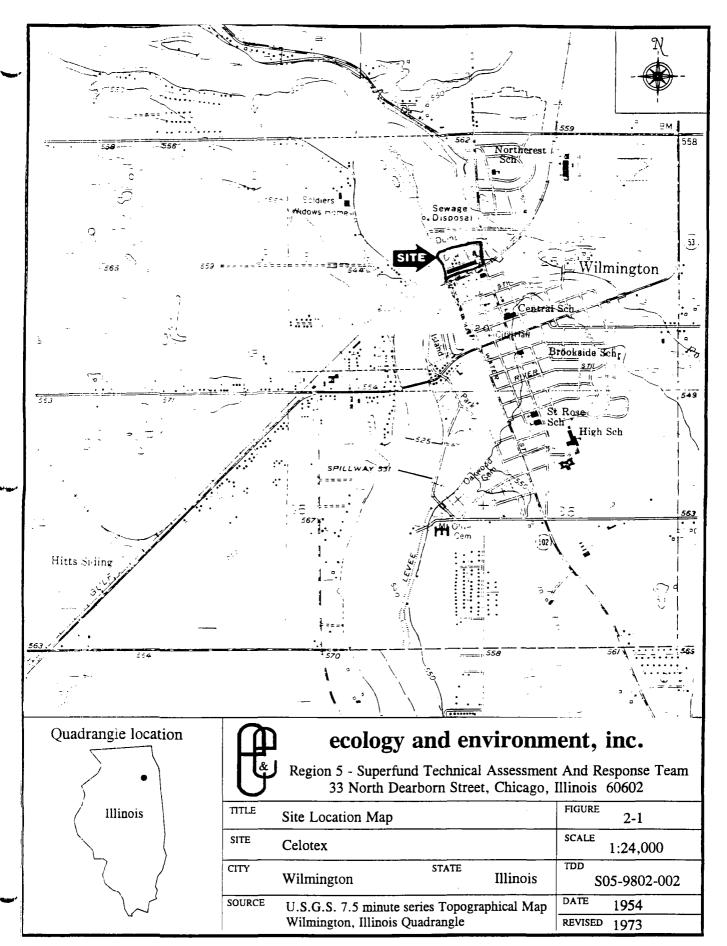
<u>Figure</u>		<u>Page</u>
2-1	Site Location Map	2-3
2-2	Site Features Map	2-4
3-1	Sample Location Map	3-5
3-2	Background Sample Location Map	3-6

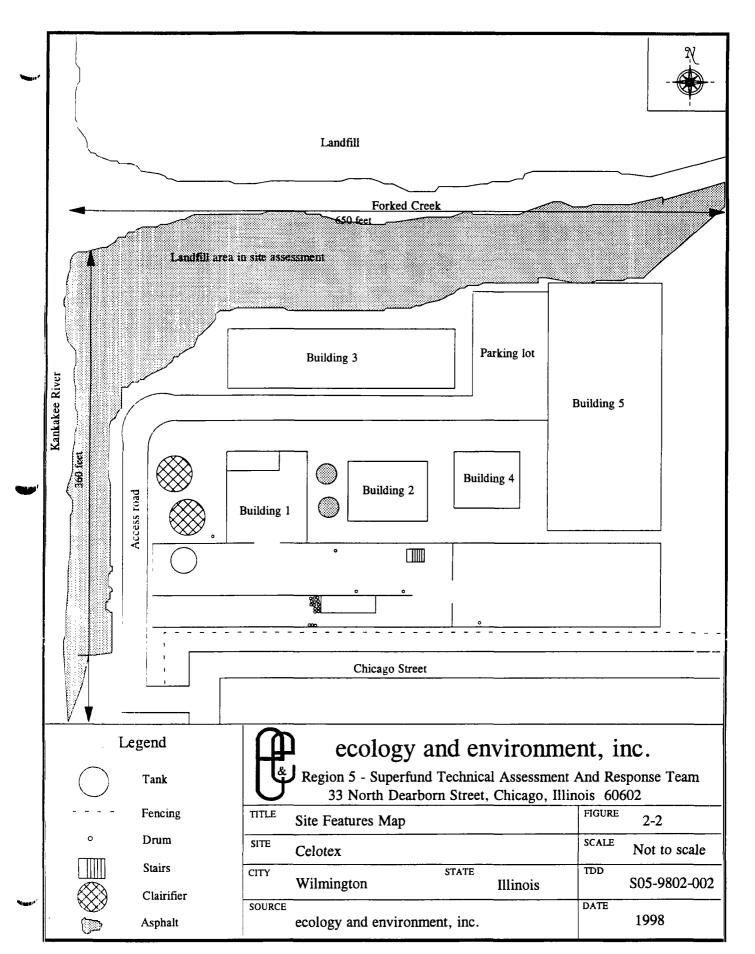
									I	Page
(6, 1997)	 		•							4-2
1. 1997) .										4-5
. 1998) .										4-7

THE RESERVE AND THE PROPERTY OF THE PROPERTY O

1. Introduction

The Ecology and Environment, Inc. (E & E), Superfund Technical Assessment and Response Team (START) was tasked by the United States Environmental Protection Agency (U.S. EPA), under Technical Direction Document (TDD) number S05-9802-002, to conduct a site assessment at the Celotex site, located in Wilmington, Will County, Illinois. START was tasked to prepare and implement a safety plan; review background information; collect samples; subcontract analytical services; document conditions on site; conduct air monitoring; evaluate threats to human health and the environment; and make recommendations to U.S. EPA as to the potential need for removal action, further investigation, or other actions which may be prudent. The site assessment was performed in accordance with the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 Code of Federal Regulations (CFR), Section 300.415, paragraph (b)(2) to evaluate on-site conditions and potential threats to human health and the environment. This report summarizes START site assessment activities.


2. Site Background


The site is located at the northwest corner of Kankakee Street and Chicago Street in Wilmington, Illinois, at geographic coordinates: latitude 41°18'76.8" north and longitude 88°08'95.5" west (Figure 2-1). The site is bordered on the north by Forked Creek, on the west by the Kankakee River, on the south by Chicago Street, and to the east by Kankakee Street and industrial facilities. The site is partially surrounded by chain-linked fence, but public access is possible through the fence, many holes in the exterior of the building, and the facility gate is not secured.

The Celotex facility was constructed in the late 1950s, and was used for production of roofing materials and as a paper mill. Celotex ceased operations in the early 1980s. The facility was purchased by Ronald Cruise, Trust Agent, in 1987, but apparently has been acquired by Will County due to nonpayment of property taxes, in June 1997. Numerous complaints by residents of Wilmington concerning the condition of the facility initiated investigations to determine whether hazardous wastes are present at the facility. An inspection in 1994 indicated that approximately twenty-five 55-gallon drums were present, some of which were leaking unknown materials with a "solvent odor." Mr. Cruise was cited in 1994 for numerous violations regarding dumping at the site, and storage of suspected hazardous waste materials. No apparent actions resulted from these citations. The buildings have been used for gang-related activities and gang graffiti is present on outside walls.

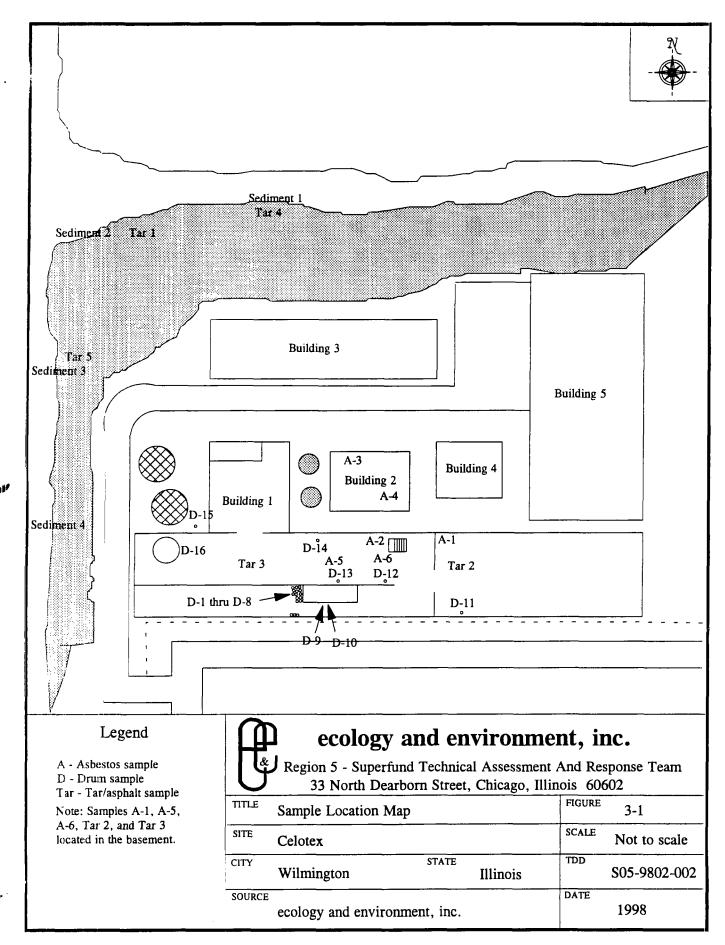
The site, comprising approximately 6 acres, contains five steel buildings (designated 1 through 5) and two concrete, aboveground wastewater clarifiers. The buildings are in poor condition, with broken windows and deteriorating roofs, and contain miscellaneous equipment and debris. Building 1 has been used by the City of Wilmington for equipment storage, and currently has approximately twenty-five 55-gallon drums stored inside. Buildings 2, 3, and 4 contain miscellaneous debris, including insulation suspected of containing asbestos. A section of Building 3 was used by a local artist as a workshop. Building 5 is apparently used for storage by a trucking firm. A landfill containing asphalt materials used by the Celotex corporation, is located in the northwest section of the site, adjacent to the Kankakee River.

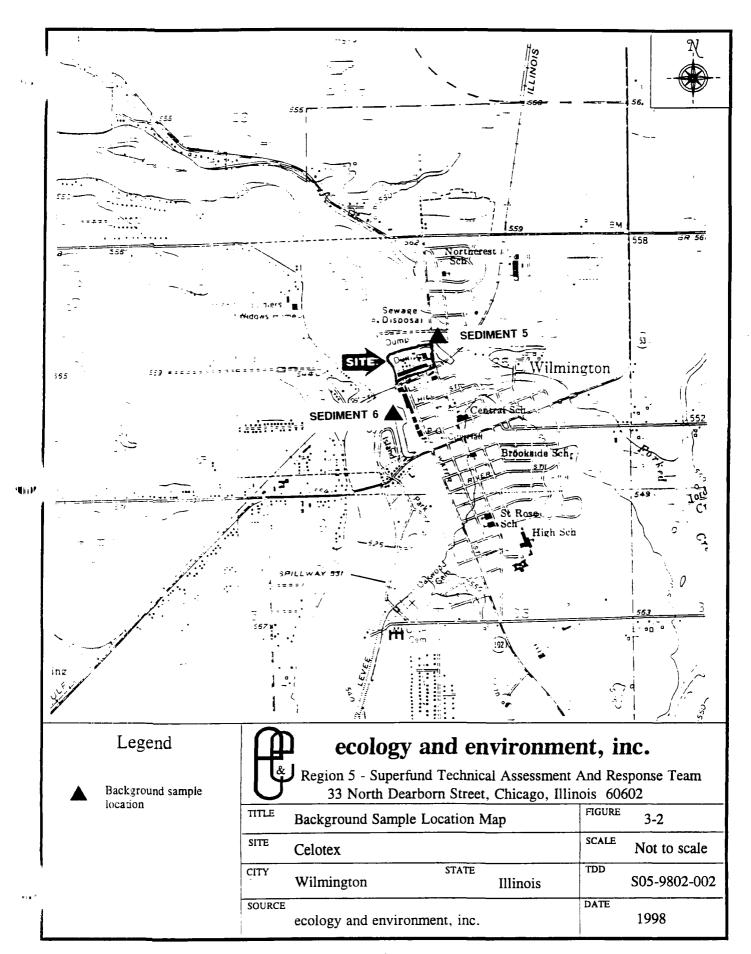
Bundles of shingles have also been observed half buried along the southern bank of Forked Creek. The extent of the asphalt runs along the southern side of Forked Creek, and along the majority of the Celotex property that runs along the eastern side of the Kankakee River (Figure 2-2). The landfill was the source of numerous fires when Celotex was in operation. Another landfill, of approximately 40 acres, exists north of Forked Creek. (This area was not included in this assessment). Site background information was obtained from the Wilmington Free Press; a narrative written by James Haennicke of the Illinois Environmental Protection Agency (IEPA); information supplied by Jonathan Jones, a representative from the Wilmington Water Plant; and by site reconnaissance.

3. Site Assessment

On September 26, 1997. START members Brendan McLennan and Nabil Fayoumi, and U.S. EPA On-Scene Coordinators (OSCs) Keith Lesniak and Sam Borries, mobilized to the Celotex site, arriving at 0940 hours. Weather conditions included sunny skies and temperature around 75°F. A health and safety meeting was conducted upon arrival at the site, prior to site entry. A decontamination and setup area was established in the parking lot to the north of Building 1. Background air monitoring was performed using a combustible gas indicator (CGI) and photoionization detector (PID). Both instruments were calibrated prior to use. No explosive gases or organic vapor mixtures were detected above background levels in the ambient air.

At 1000 hours, a site reconnaissance was performed to determine the condition of buildings and identify sample collection areas. Building 1 is the largest building on site and is in the worst condition of all the buildings, with crumbling interior walls and a deteriorated roof. All 55-gallon drums found on site were in Building 1. Building 2 is a small corrugated steel structure located northeast of Building 1. Garbage bags containing asbestos insulation were observed in the northwest corner of the building. Inside Building 3, there were various pieces of machinery, as well as desks and other debris from the previous business that leased the building. A section of Building 3 is being utilized by local artist Patrick Baron as a workshop. All entrances to Building 4 were boarded up and the building could not be entered during the site assessment. Building 5 is currently used by a trucking company and was not entered. An asphalt mass, estimated to contain 30,000 cubic yards, was present, in the northwest corner of the site in the old landfill, adjacent to the eastern side of the Kankakee River and along the southern side of Forked Creek, to the Kankakee Street Bridge. In all, over 1,000 feet of river and creekbank contained asphalt, either in the water or near the water, that at times of high waters could be inundated. An oily sheen was observed on the water surface, adjacent to the asphalt material. In addition to the asphalt in the old landfill, there were two additional asphalt masses on the property, as well as a layer of asphalt covering the basement floor in Building 1.


At 1020 hours, START members McLennan and Fayoumi, and OSCs Borries and Lesniak. donned Level C personal protection and entered the site to conduct additional site reconnaissance, and to collect samples from drums and areas identified during the initial site reconnaissance. While OSCs Borries and Lesniak investigated the site, START members McLennan and Fayoumi began collecting samples from 55-gallon steel drums, which were located in Building 1 (Figure 3-1). Using a drum thief, sample D-1, a thick brown liquid, was collected from a drum in the south central area of Building 1 (Figure 3-1); air monitoring of the drum contents indicated no elevated PID or CGI readings. Using a drum thief, sample D-2, a clear yellowish/brown liquid, was collected from a drum in the south central area of Building 1; air monitoring of the drum contents indicated no elevated PID or CGI readings. Using a drum thief, sample D-3, a clear orange/yellow liquid, was collected from a drum in the south central area of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a drum thief, sample D-4, a thick brown liquid, was collected from a drum in the south central area of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a drum thief, sample D-5, a thick brown liquid, was collected from a drum in the south central area of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a drum thief, sample D-6, a light brown liquid, was collected from a drum in the south central area of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a drum thief, sample D-7, a clear, viscous liquid, was collected from a drum in the south central area of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a stainless steel trowel, sample D-8, a white powder, was collected from a drum in the south central area of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a drum thief, sample D-9, a thick brown liquid, was collected from a 5gallon pail in the south central area of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a drum thief, sample D-10, a thick brown liquid, was collected from a 5-gallon pail in the south central area of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a drum thief, sample D-11, a cloudy brownish liquid, was collected from a drum in the southeast corner of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a drum thief, sample D-12, a brown oily liquid, was collected from a plastic drum in the north central area of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a drum thief, sample D-13, a brown oily liquid, was collected from a drum in the north central area of Building 1; air monitoring indicated a maximum PID reading of 2,000 parts per million (ppm), there was no elevated CGI reading. Using a drum thief, sample D-14, a thick brown liquid, was collected from a drum in the north central area of Building 1; air monitoring indicated no elevated PID or CGI readings. Using a drum thief, sample D-15, a clear liquid, was collected from a drum outside of Building 1 on the western side; air monitoring


indicated no elevated PID or CGI readings. Using a stainless steel trowel, sample D-16, a white crystalline solid, was collected from a tank in the northwest corner of Building 1; air monitoring indicated no elevated PID or CGI readings. Sample D-17 was collected from a composite of drums 2, 3, 9, 10, 12, and 13. Sample Tar 1 was collected from the asphalt landfill adjacent to the Kankakee River. Sample A-1, an asbestos-like material, was collected in the basement of Building 1, on the north central side. Sample A-2, an asbestos-like material, was collected on the main floor of Building 1, on the north central side. Sample A-3, an asbestos-like material, was collected in the northwest corner of Building 2. Sample A-4, an asbestos-like material, was collected in the eastern area of Building 2. All drum samples and asbestos samples were collected in 4-ounce glass jars, and the tar samples were collected in two 16-ounce glass bottles and two 4-ounce glass bottles, and were sent to American Environmental Network (AEN) Laboratories in Schaumburg, Illinois, for analyses under analytical TDD S05-9709-805.

On December 11, 1997, OSC Fred Bartman requested that START return to site and collect an additional sample of the asphalt and asbestos in the basement of Building 1. START John Nordine and OSC Bartman mobilized to the Celotex site to allow OSC Bartman to view the site and to collect the samples. Samples Tar 2 and Tar 3 were collected in the basement of Building 1 and were a black asphalt-like substance. Samples A-5 and A-6 were collected from pipe wrap in the basement of Building 1. The samples were collected in 16-ounce glass bottles and shipped to National Environmental Testing, Inc. (NET), in Bartlett, Illinois, for analyses under analytical TDD S05-9712-804.

On February 17, 1998, OSC Bartman requested that START return to site and collect samples of asphalt and sediment samples along Forked Creek and the Kankakee River. Two asphalt samples were collected, Tar 4 and Tar 5. Sample Tar 4 was collected at the midpoint of the landfill along Forked Creek. Sample Tar 5 was collected 300 feet south of the mouth of Forked Creek on the bank of the Kankakee River. Six sediment samples were collected, Sediment 1 through Sediment 6. Four samples were collected in the area of asphalt contamination and two samples were collected as background samples upstream of the contamination, on both the Kankakee River and Forked Creek. Sample Sediment 1 was collected at the midpoint of the landfill along Forked Creek. Sample Sediment 2 was collected at the mouth of Forked Creek into the Kankakee River. Sample Sediment 3 was collected along the Kankakee River 200 feet south of the mouth of Forked Creek. Sample Sediment 4 was collected along the Kankakee River 400 feet south of the mouth of Forked Creek. Sample Sediment 5 was collected east of the Kankakee Street Bridge as a background sample for Forked Creek, upstream of the asphalt contamination. Sample Sediment 6 was collected as a background sample south of the site at an outcropping in the Kankakee River, 500 yards upstream (south) of the asphalt contamination. The samples were collected in

16-ounce glass bottles and shipped to American Environmental Network, Inc. (AEN), in Schaumburg, Illinois, for analyses under analytical TDD S05-9802-807.

4. Analytical Results

The first sampling event was on September 26, 1997. The drum samples (D-1 through D-17) were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) metals, F-listed solvents, pH, and flash point. Sample Tar 1 was analyzed for SVOCs, RCRA metals, PCBs, and asbestos. Samples A-1 through A-4 were analyzed for asbestos only. For the second sampling event, on December 11, 1997, samples Tar 2 and Tar 3 were analyzed for polynuclear aromatic hydrocarbons (PAHs), PCBs, and RCRA metals. Samples A-5 and A-6 were analyzed for asbestos using polarized light microscopy. For the third sampling event on February 17, 1998, samples Tar 4 and Tar 5 were analyzed for asbestos, PAHs, and total petroleum hydrocarbons (TPHs). Samples Sediment 1 through Sediment 6 were analyzed for PAHs and TPHs. A summary of selected results are presented in Tables 4-1, 4-2, and 4-3. The pH of samples D-1, D-4, D-5, D-6, D-7, D-12, and D-16 exceeded 12.5 standard units, and therefore exhibit the characteristic of corrosivity, which designate these wastes as hazardous. The flash points of D-2, D-13, and D-14 were less than 140°F; the contents of these drums are considered hazardous waste, having exhibited the characteristic of ignitability. PCBs were detected in sample Tar 2 located in the basement of Building 1. PCBs were not detected above detection limits in any of the other samples analyzed for PCBs (D-17, Tar 1, and Tar 3). Samples A-1, A-3, A-4, and A-6 tested positive for asbestos using polarized light microscopy (Tables 4-1 and 4-2). Samples Sediment 1 through Sediment 4, and samples Tar 4 and Tar 5 tested positive for TPHs (Table 4-3).

Table 4-1

SUMMARY OF ANALYTICAL RESULTS (SEPTEMBER 26, 1997) CELOTEX SITE WILMINGTON, WILL COUNTY, ILLINOIS

		Sample Designation											
Parameter	D-1	D-2	D-3	D-4	D-5	D-6	D-7	D-8	D-9	D-10			
pH (standard units)	>14.0	NA	NA	> 14.0	>14.0	13.4	13.6	9.54	NA	NA			
Flash Point (°F)	NA NA	134	> 200	NA	NA	NA	NA	NA	> 200	> 200			
F-Listed Solvents	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA			
RCRA Metals (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Volatile Organic Compounds	(μ g/kg)												
Ethyl benzene	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA			
Xylenes	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Benzene	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NA			
Semivolatile Organic Compou	inds (mg/kg)					· · · · · · · · · · · · · · · · · · ·	·						
Napthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
2-Methyl-napthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
PCBs (mg/kg)	NA	NA NA	_NA	NA	NA	NA	NA ,	NA	NA	NA			
Asbestos (%)				-									
Chrysotile	NA .	NA	NA	NA	NA	NA	NA	NA ·	NA	NA			
Amosite	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			

Table 4-1

SUMMARY OF ANALYTICAL RESULTS (SEPTEMBER 26, 1997) CELOTEX SITE

WILMINGTON, WILL COUNTY, ILLINOIS

		Sample Designation											
Parameter	D-12	D-13	D-14	D-16	D-17	Tar 1	A-1	A-2	A-3	A-4			
pH (standard units)	>14.0	NA	NA	13.7	NA	NA	NA	NA	NA	NA			
Flash Point (#F)	> 200	81	67	NA	NA	NA	NA	NA	NA	NA			
F-Listed Solvents	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
RCRA Metals (mg/L)	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA			
Volatile Organic Compounds	Volatile Organic Compounds (μg/kg)												
Ethyl benzene	NA	35,000	NA	NA	NA	NA NA	NA	NA	NA	NA			
Xylenes	NA	170,000	NA	NA	NA	NA	NA	NA	NA	NA			
Benzene	NA	8,300	NA	NA	NA	NA	NA	NA	NA	NA			
Semivolatile Organic Compou	nds (mg/kg)		· · · · · · · · · · · · · · · · · · ·						····				
Napthalene	NA	96	NA	NA	NA	NA	NA	NA	NA	NA			
2-Methyl-napthalene	NA	27	NA	NA	NA	NA	ŃΑ	NA	NA	NA			
PCBs (mg/kg)	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA			
Asbestos (%)													
Chrysotile	NA	NA	NA	NA	NA	ND	35-40	ND	5-10	15-20			
Amosite	NA	NA	NA	NA	NA	NA	ND	ND	ND	10-15			

<u>Kev:</u>

NA = Not analyzed.

ND -- Not detected.

^F = Degrees fahrenheit.

μg/kg = Micrograms per kilogram.

mg/kg = Milligrams per kilogram.

> = Greater than.

Source: American Environmental Network, Schaumberg, Illinois (Analytical TDD S05-9709-805).

Table 4-2 SUMMARY OF ANALYTICAL RESULTS (DECEMBER 11, 1997) CELOTEX SITE WILMINGTON, WILL COUNTY, ILLINOIS

	Sample Designation										
Parameter	Tar 2	Tar 3	A-5	A-6							
RCRA Metals (mg/kg)											
Arsenic	3.0	2.8	NA	NA							
Barium	32	24	NA	NA NA							
Cadmium	2.0	0.78	NA	NA_							
Chromium	50	20	NA	NA							
Lead	100	23	NA	NA							
Mercury	< 0.042	< 0.048	NA NA	NA							
Selenium	< 0.26	< 0.30	NA	NA							
Silver	<2.1	<2.4	NA	NA							
Polyaromatic Hydrocarbons (mg/kg)	ND	ND	NA	NA							
Polychlorinated Biphenyls	(μg/kg)										
PCB-1016	< 5,000	<20,000	NA	NA							
PCB-1221	< 5,000	<20,000	NA	NA							
PCB-1232	< 5,000	<20,000	NA	NA							
PCB-1242	10,100	< 20,000	NA	NA							
PCB-1248	< 5,000	<20,000	NA	NA							
PCB-1254	<5,000	<20.000	NA	NA.							
PCB-1260	<5,000	<20,000	NA	<u>NA</u>							
Asbestos (%)											
Actinolite/ tremolite	NA	NA	ND	ND							
Amosite	NA	NA	ND	25							
Anthophylite	NA	NA	ND	ND							
Chrysotile	NA	NA	ND	ND							
Crocidolite	NA	NA	ND	20							
Other components	NA	NA	100	55							

4411

4-5

Key:

Not analyzed. Not detected. NA ND Micrograms per kilogram.
Milligrams per kilogram.
Less than. $\mu g/kg$

mg/kg

Source: National Environmental Testing, Bartlett, Illinois (Analytical TDD S05-9712-804).

Table 4-3

SUMMARY OF ANALYTICAL RESULTS (FEBRUARY 17, 1998) CELOTEX SITE

WILMINGTON, WILL COUNTY, ILLINOIS

	Sample Designation											
Parameter	Tar 4	Tar 5	Sediment 1	Sediment 2	Sediment 3	Sediment 4	Sediment 5	Sediment 6				
Polynuclear Aromatic Hydrocarbons	ND	ND	ND	ND	ND	ND	ND	ND				
Total Petroleum Hydrocarbons (mg/kg)	47,200	26,900	84.8	72.1	979	55.4	ND	ND				
Asbestos	ND	ND	NA	NA	NA	NA	NA	NA				

Key:

NA = Not analyzed. ND = Not detected.

mg/kg = Milligrams per kilogram.

Source: American Environmental Network, Schaumburg, Illinois (Analytical TDD S05-9802-807).

5. Threats to Human Health and the Environment

Paragraph (b)(2) of Part 300.415 of the NCP lists factors to be considered when determining the appropriateness of a potential removal action at a site. The following discussion presents a summary of those factors for the Celotex site in two parts, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste and Oil Pollution Act (OPA) waste.

CERCLA Waste

May a

Mr.

- Actual or potential exposure to hazardous substances or pollutants or contaminants by nearby populations, animals, or food chains. Analytical results from the drum samples collected on August 26, 1997, indicate the presence of hazardous substances at the Celotex site. Both ignitable and corrosive liquids were found in drum samples. Highly caustic liquids exist in samples D-1, D-4, D-5, D-6, D-7, D-12, and D-17. If ingested, caustic liquids can cause internal lesions and edema. Death can result due to the potential complications, such as asphyxia, shock, hemorrhage, or infection. Dermal exposure to less concentrated caustic solutions can cause irritation and dermatitis. Asbestos was also found in open bags and represents a carcinogenic threat to exposed populations. Because the Celotex facility is unsecured and located within the city of Wilmington, nearby residents can be exposed to hazardous materials present on site. Exposure to PCBs can result in chloracne (a long-lasting and disfiguring skin disease); impairment of liver function; a variety of neurobehavioral symptoms; menstrual disorders; and an increased incidence of cancer. The Celotex site is unsecured and easily accessible to the public, as evidenced by numerous incidences of graffiti on the property and inside the buildings, and can be exposed to the PCB contaminated asphalt in the basement.
- Hazardous substances or pollutants or contaminants in drums, barrels, tanks, or other bulk storage containers, that may pose a threat of release.
 START observed approximately twenty-five 55-gallon drums during the site reconnaissance. The drums contain liquids that exhibit both corrosive and ignitable characteristics. Some drums appeared to have leaked contents.
- Weather conditions that may cause pollutants or contaminants to migrate or be released. All on-site contaminants are found in buildings with roofs that are in

a deteriorated state, which could allow migration of contaminants due to the weather. Exposure to the weather can result in additional degradation of the 55-gallon drums, which could cause further migration of contaminants if hazardous substances leaked.

• Threat of fire or explosion. Paragraph (a)(1) of Part 261.21 of 40 CFR states that a substance that exhibits a flash point of less than 140°F is ignitable. Samples D-2, D-13, and D-14 exhibit flash points of 134°F, 81°F, and 67°F, respectively, and are therefore, ignitable substances.

OPA Waste

.....

Sugar.

The asphalt material is leaching into nearby surface waters as evidenced by oil sheens on the water and analytical results of TPHs in sediment. The asphalt is classified as an oil under OPA. The asphalt can cause much of the same damage as an oil release, such as damage to fish tissue, can kill benthic organisms, and can kill waterfowl. U.S. EPA has the authority to remove the discharge or to mitigate or prevent the threat of discharge under Section 311(c)(2) of the Clean Water Act (CWA).

6. Summary

Based upon the observations made during the U.S. EPA site assessment and analytical results from samples collected at the Celotex site, a CERCLA and OPA removal action is warranted. The presence of the threats addressed in Section 5 will require the removal of approximately 25 hazardous and nonhazardous drums, asbestos-containing material, and removal of 30,000 cubic yards of asphalt material from the on-site landfill.

At this time, the following specific actions are proposed to eliminate the threats listed in Section 5:

- 1) Drums will be segregated and sampled; following analysis, drums will be categorized for disposal;
- 2) Removal and disposal of all drums containing hazardous and nonhazardous materials:
- 3) Removal and disposal of all asbestos-containing material;

4,,,

抽

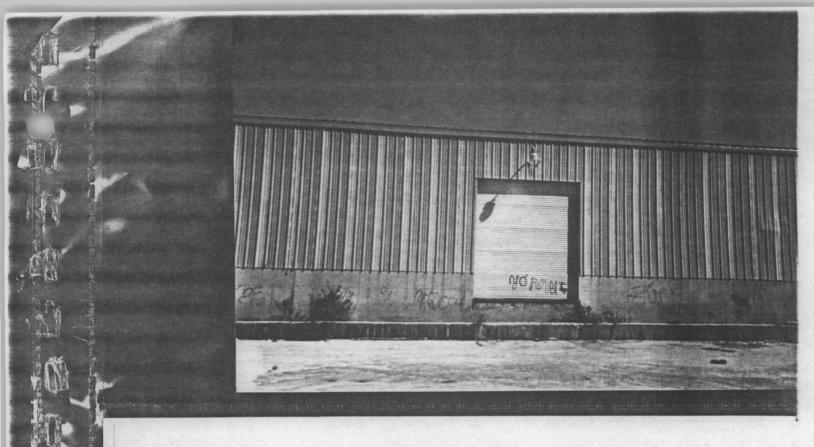
4) Removal and disposal of all asphalt-containing material from the on-site landfill.

The removal action is estimated to be completed in 70 days and will include the removal of all hazardous drums, nonhazardous drums, asbestos-containing material, and asphalt.

7. Cost Estimate

410

A site estimate for the removal of solid wastes at the Celotex site has been based on several assumptions. For the cost estimate, it was estimated that 10 drums of hazardous materials, 15 drums of nonhazardous materials, 40 yards of asbestos-containing materials, and 30,000 cubic yards of asphalt material would need to be removed and disposed. The cost estimate has been divided into two parts; one estimate for the removal of CERCLA waste and one estimate for the removal of OPA waste.

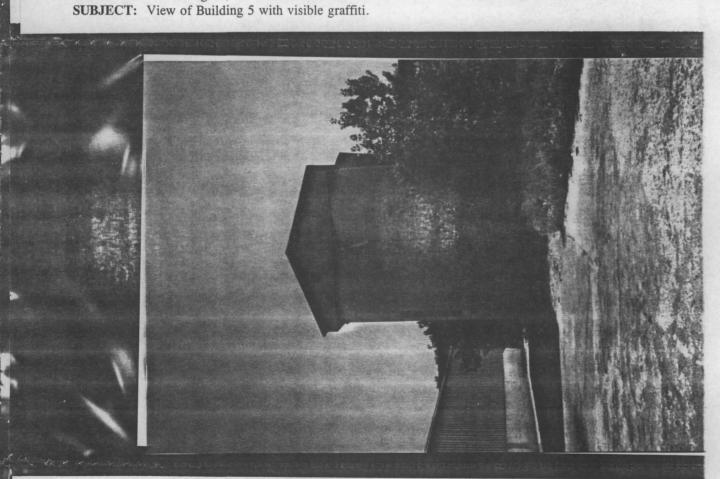

Prior to final disposal, all waste will be representatively sampled and analyzed for waste disposal parameters. The cleanup cost estimate, calculated using the Removal Cost Management System (RCMS) software version 4.2, includes cleanup contractor. U.S. EPA, and START costs, and totals approximately \$61,400 for the CERCLA waste removal and \$2,357,392 for the OPA waste removal. These costs are based on the above-mentioned assumptions and those that follow:

- The site work will be completed in seventy-five 10-hour days. Four days will be necessary for mobilization and demobilization. Site preparation and staging of the drums will take approximately three days. Sampling and analysis of the drums will take approximately two days. The coordination, preparation, and loading of the drums for off-site transportation and disposal will take approximately two days. Excavation and disposal of the asphalt waste will take 75 days. The removal of the OPA waste and CERCLA waste will occur simultaneously.
- All cleanup contractor rates for personnel and equipment are those of the Emergency Response Cleanup Services (ERCS) contractor.
- ERCS personnel will consist of one response manager, one foreman, eight equipment operators/laborers, and one field clerk. The START contractor will provide one civil engineer. U.S. EPA will provide one OSC.

Appendix A

Photodocumentation

40


SITE: Celotex LOCATION: Wilmington, IL

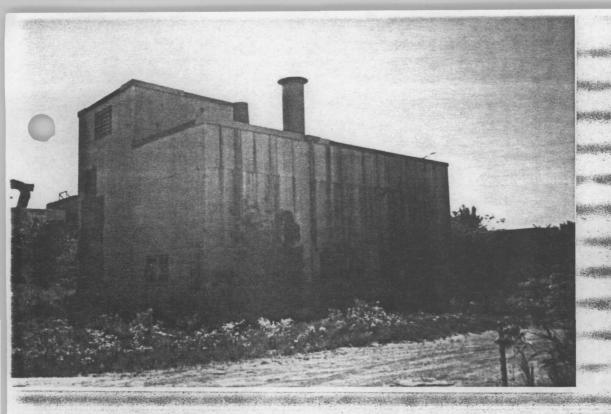
DATE: August 26, 1997

DIRECTION: East

TIME: 1000

PHOTOGRAPHER: Brendan McLennan

SITE: Celotex


LOCATION: Wilmington, IL

SUBJECT: View of Building 4.

DATE: August 26, 1997

DIRECTION: South

TIME: 1002

LOCATION: Wilmington, IL

SUBJECT: View of Building 2.

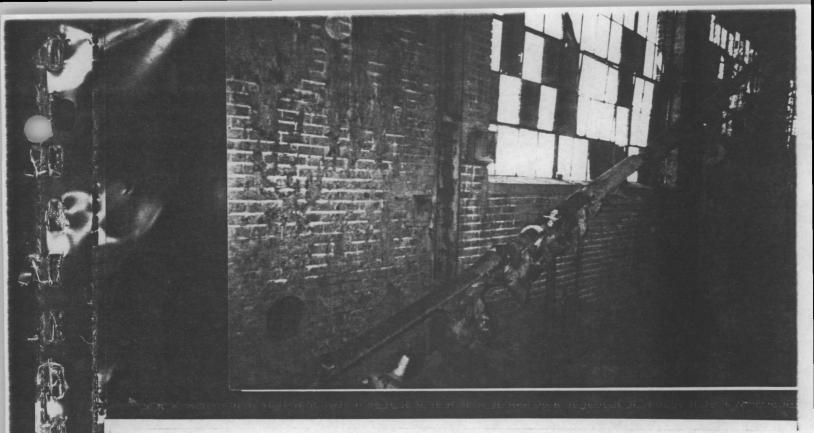
DATE: August 26, 1997

DIRECTION: South

TIME: 1003

PHOTOGRAPHER: Brendan McLennan

SITE: Celotex

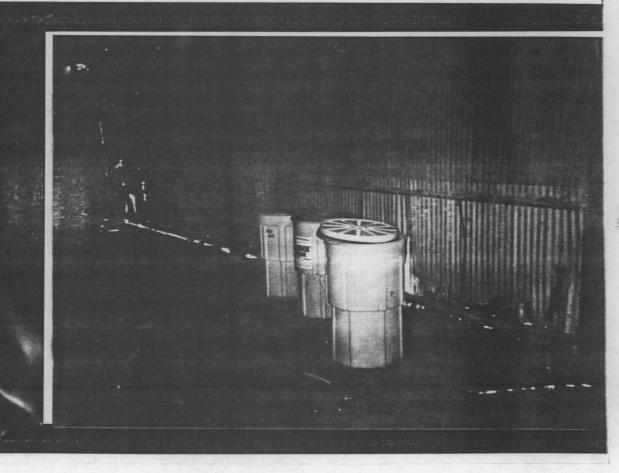

LOCATION: Wilmington, IL

DATE: August 26, 1997

DIRECTION: North

SUBJECT: Asbestos-containing material in deteriorated bags.

TIME: 1007


DATE: August 26, 1997

LOCATION: Wilmington, IL DIRECTION: Northeast

SUBJECT: Location of sample A-2.

TIME: 1100

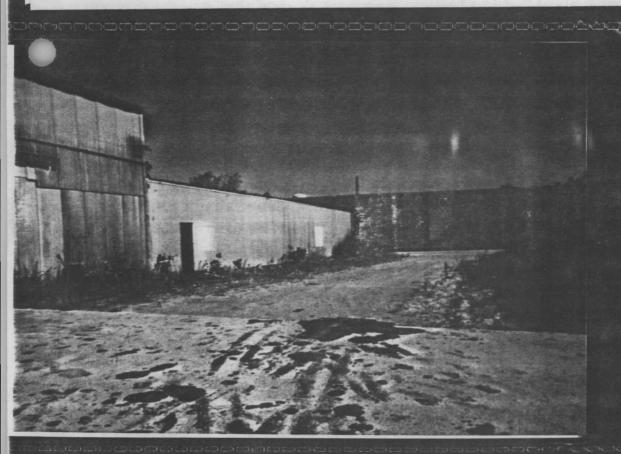
PHOTOGRAPHER: Brendan McLennan

SITE: Celotex

LOCATION: Wilmington, IL SUBJECT: Drum overpacks.

DATE: August 26, 1997 **DIRECTION:** Southeast

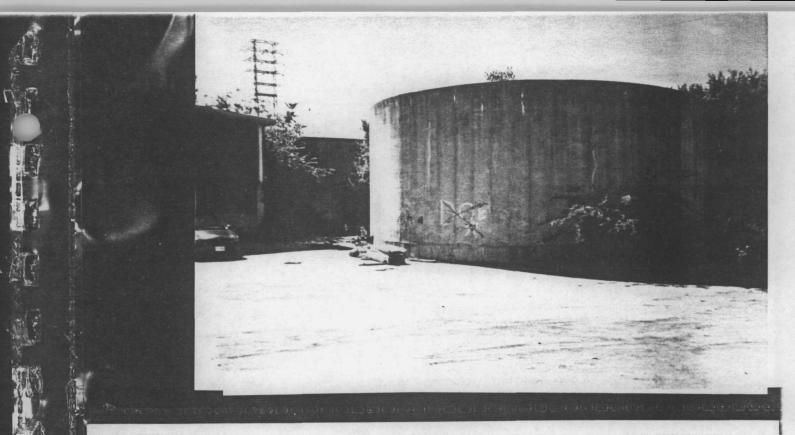
TIME: 1105



LOCATION: Wilmington, IL DIRECTION: West SUBJECT: Location of sample D-16.

DATE: August 26, 1997

TIME: 1107


PHOTOGRAPHER: Brendan McLennan

SITE: Celotex LOCATION: Wilmington, IL SUBJECT: View of Building 3.

DATE: August 26, 1997 **DIRECTION:** Northeast

TIME: 1110

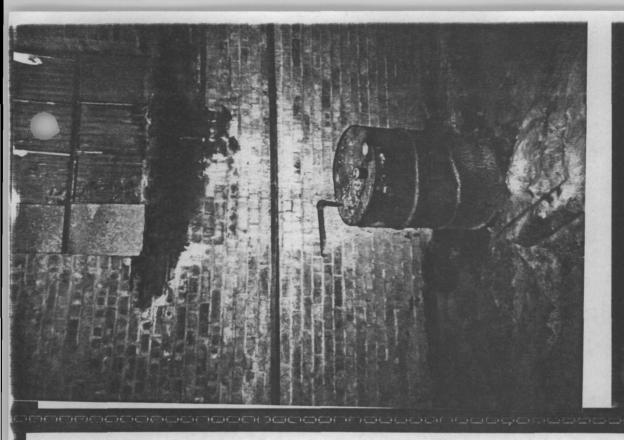
DATE: August 26, 1997

LOCATION: Wilmington, IL DIRECTION: Southwest

SUBJECT: Clarifiers west of Building 1.

TIME: 1115

PHOTOGRAPHER: Brendan McLennan

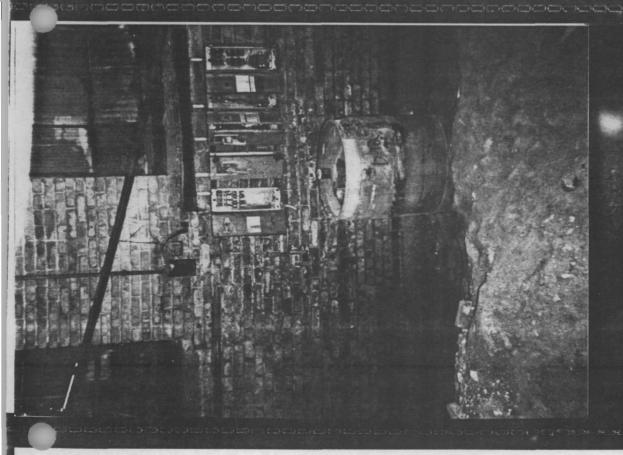

SITE: Celotex

LOCATION: Wilmington, IL SUBJECT: View of Building 1.

DATE: August 26, 1997

DIRECTION: South

TIME: 1120

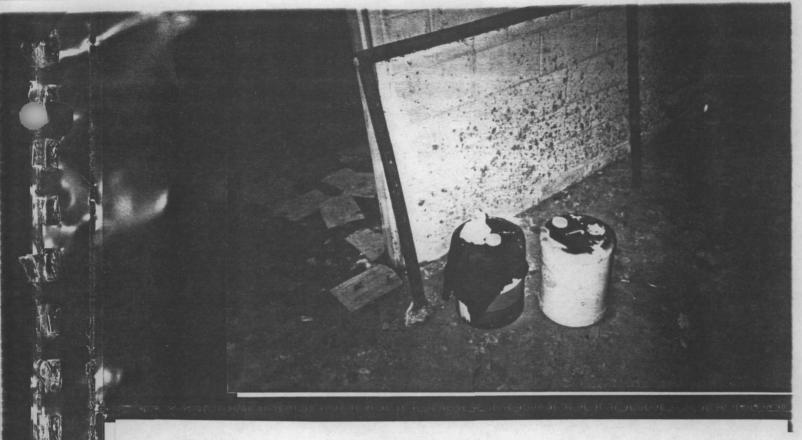

LOCATION: Wilmington, IL DIRECTION: South

DATE: August 26, 1997

TIME: 1130

PHOTOGRAPHER: Brendan McLennan

SUBJECT: Location of sample D-13 with PID reading of 2,000 ppm.

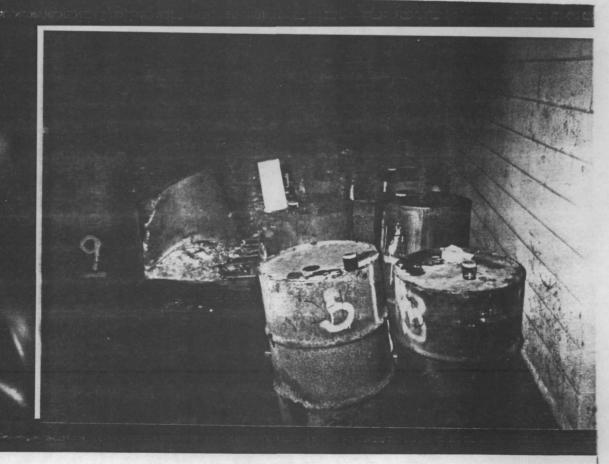

SITE: Celotex

LOCATION: Wilmington, IL DIRECTION: Southwest

DATE: August 26, 1997

SUBJECT: Location of sample D-12.

TIME: 1131

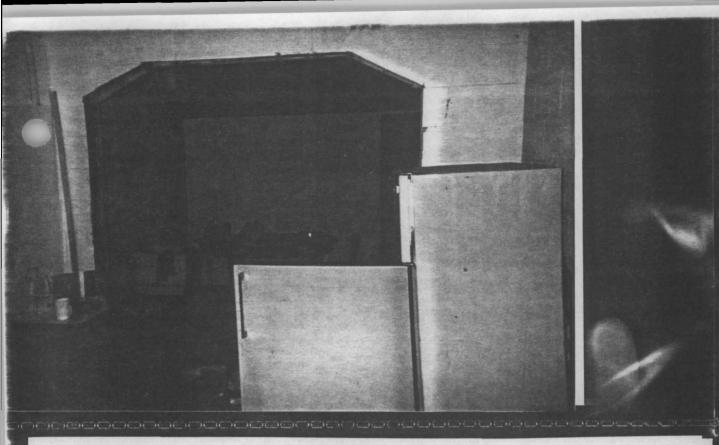

DATE: August 26, 1997

TIME: 1134

LOCATION: Wilmington, IL DIRECTION: North

PHOTOGRAPHER: Brendan McLennan

SUBJECT: Location of sample D-9, on the left, and D-10, on the right.



SITE: Celotex

LOCATION: Wilmington, IL DIRECTION: North SUBJECT: Location of samples D-1 to D-8.

DATE: August 26, 1997

TIME: 1137

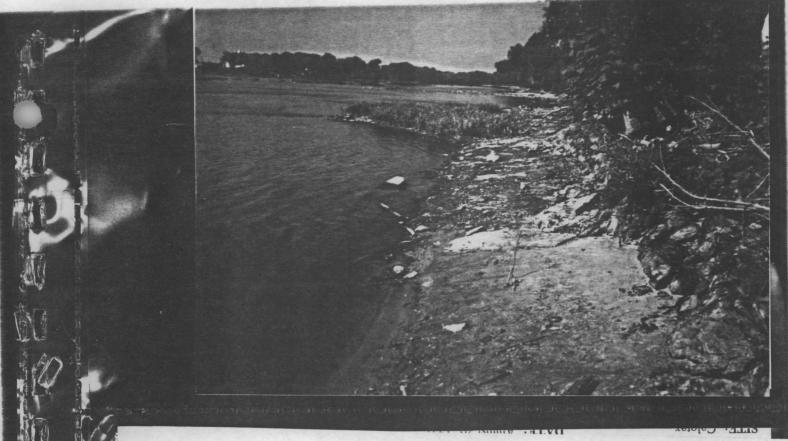

LOCATION: Wilmington, IL DIRECTION: North

DATE: August 26, 1997

SUBJECT: View inside Building 3.

TIME: 1145

PHOTOGRAPHER: Brendan McLennan


SITE: Celotex

LOCATION: Wilmington, IL DIRECTION: North

DATE: August 26, 1997

SUBJECT: View of artist's workshop in Building 3.

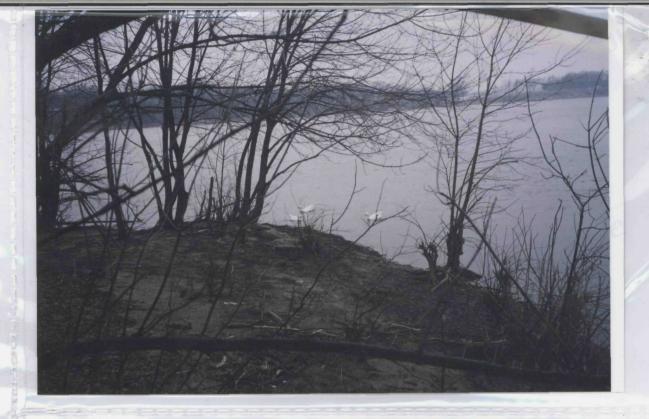
TIME: 1147

LOCATION: Wilmington, IL DIRECTION: East

DATE: August 26, 1997

SUBJECT: Tar mass near Forked Creek.

TIME: 1200


PHOTOGRAPHER: Brendan McLennan

SITE: Celotex

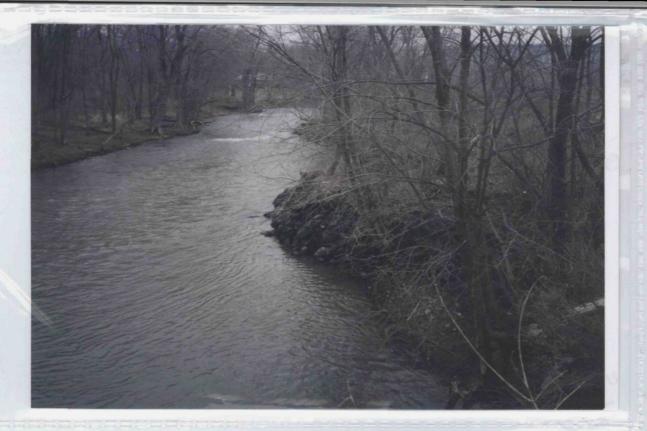
LOCATION: Wilmington, IL DIRECTION: Down SUBJECT: Location of sample Tar 1.

DATE: August 26, 1997

SITE: Celotex LOCATION: Wilmington, IL SUBJECT: Swans feeding along shoreline of Kankakee River.

DATE: February 17, 1998 **DIRECTION:** West

TIME: 1200 PHOTOGRAPHER: Brendan McLennan


SITE: Celotex LOCATION: Wilmington, IL

DATE: February 17, 1998 DIRECTION: Down

TIME: 1206

PHOTOGRAPHER: Brendan McLennan

SUBJECT: Asphalt landfill inundated by water along Kankakee River.

SITE: Celotex LOCATION: Wilmington, IL DATE: February 17, 1998 **DIRECTION:** East

TIME: 1210 PHOTOGRAPHER: Brendan McLennan

SUBJECT: Asphalt landfill inundated by water along Forked Creek.

SITE: Celotex LOCATION: Wilmington, IL SUBJECT: Evidence of beaver activity.

DATE: February 17, 1998 **DIRECTION:** West

TIME: 1215

PHOTOGRAPHER: Brendan McLennan

Appendix B

Analytical Data Package

33 North Dearborn Street Chicago: Linois 60602

Tei 312 578-9243, Fax: 312/578-9345

MEMORANDUM

DATE:

October 30, 1997

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Organic Data Quality Review for Volatile Organic Compounds (VOCs), Celotex, Wilmington, Will County,

Illinois

REFERENCE:

Project TDD S05-9709-007 Analytical TDD S05-9709-805

Project PAN 7P0701SIXX

Analytical PAN 7PAE01TAXX

The data quality assurance (QA) review of one drum sample collected from the Celotex site is complete. The sample was collected on September 26, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The sample was submitted to American Environmental Network, Schaumburg, Illinois. The laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Solid Waste 846 Method 8260.

Sample Identification

START Identification No.

Laboratory Identification No.

D-13

L72972331-012

Data Qualifications:

I. <u>Sample Holding Time: Acceptable</u>

The sample was collected on September 26, 1997, and analyzed on October 10, 1997. This is within the 14-day holding time limit.

90.000 03091

relotex roject TDD S05-9709-007 nalytical TDD S05-9709-805 VOCs Page 2

II. <u>Gas Chromatography/Mass Spectrometry (GC/MS) Tuning:</u> Acceptable

GC/MS tuning to meet ion abundance criteria using bromofluorobenzene (BFB) were acceptable and the sample was analyzed within 12 hours of BFB tuning.

III. Calibrations:

· Initial Calibration: Acceptable

A five-point initial calibration was performed prior to analysis. All average response factors were greater than 0.05. The percent relative standard deviations (%RSDs) between response factors were less than 30% for all detected target compounds.

* Continuing Calibration: Not Applicable

The sample was analyzed following the initial calibration; therefore, continuing calibration was not required.

IV. Blank: Acceptable

A method blank was analyzed with the sample. No target compounds or contaminants were detected in the blank.

V. <u>Internal Standards: Acceptable</u>

The areas of the internal standards in the sample were within -50% to +100% of the associated calibration check standard. The retention times of the internal standards were within the 30-second control limit.

VI. Compound Identification: Acceptable

The mass spectra and retention times of the detected compounds matched those of the standards.

VII. Additional QC Checks: Acceptable

The recoveries of the surrogates used in the sample and blank were within laboratory-established guidelines.

elotex coject TDD S05-9709-007 analytical TDD S05-9709-805 VOCs Page 3

VIII. Overall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in the Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990), Data Validation Procedures, Section 5.0, VOAs By GC/MS analysis. Based upon the information provided, the data are acceptable for use.

15

11-1

ь,

Project ID: S05-9709-007

EPA Target Compound List (TCL) GCMS Volatiles Analysis

Lab Sample Number: L72972331-012 Client ID: D-13 Method: 8260 Matrix: MISC LIQ

Cheft ID: D-1	3				IVIA	IIIX: MISC LIQ
Compound	Result	<u>PQL</u>	<u>Units</u>	Dilution Factor	Sample Date	Analysis Date
Chloromethane	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Vinyl Chloride	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Bromomethane	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Chloroethane	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
1,1-Dichloroethene	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Methylene Chloride	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
trans-1,2-Dichloroethene	< 5,000	5,000	u g/K g	1,000	9/26/97	10/10/97
1,1-Dichloroethane	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
call.2-Dichloroethene	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
🐪 oform	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Trichloroethane	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Carbon Tetrachloride	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Benzene	8,300	5,000	ug/Kg	1,000	9/26/97	10/10/97
1,2-Dichloroethane	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Trichloroethene	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
1,2-Dichloropropane	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Bromodichloromethane	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
cis-1,3-Dichloropropene	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Toluene	15,000	5,000	ug, Tg	1,000	9/26/97	10/10/97
trans-1,3-Dichloropropene	< 5,000	5,000	υς.´g	1,000	9/26/97	10/10/97
1,1,2-Trichloroethane	< 5,000	5,000	ug/ g	1,000	9/26/97	10/10/97
Tetrachloroethene	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Dibromochloromethane	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Chlorobenzene	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Ethylbenzene	35,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Xylenes, Total.	170,000	10,000	ug/Kg	1,000	9/26/97	10/10/97
Styrene	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Bromoform	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
1,1,2,2-Tetrachloroethane	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
Acetone	< 10,000	10,000	ug/Kg	1,000	9/26/97	10/10/97
Carbon Disulfide	< 5,000	5,000	ug/Kg	1,000	9/26/97	10/10/97
2-Butanone	< 10,000	10,000	ug/Kg	1,000	9/26/97	10/10/97
2-Hexanone	< 10,000	10,000	ug/Kg	1,000	9/26/97	10/10/97
1-`' ≅hyl-2-Pentanone	< 10,000	10,000	ug/Kg	1,000	9/26/97	10/10/97

ecology and environment, inc.

mernational Specialists in the Environment

33 North Dearborn Street Chicago, Illinois 60602

Tel. 312/578-9243, Fax: 312/578-9345

MEMORANDUM

DATE:

October 30, 1997

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Organic Data Quality Review for Semivolatile Organic

Compounds (SVOCs), Celotex, Wilmington, Will County,

Illinois

444.1

REFERENCE: Project TDD S05-9709-007 Analytical TDD S05-9709-805

Project PAN 7P0701SIXX

Analytical PAN 7PAE01TAXX

The data quality assurance (QA) review of one drum and one tar sample collected from the Celotex site is complete. The samples were collected on September 26, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were submitted to American Environmental Network, Schaumburg, Illinois. The laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Solid Waste 846 Method 8270.

Sample Identification

START Identification No.

Laboratory Identification No.

D-13 Tar 1 L72972331-012 L72972331-016

Data Qualifications:

Sample Holding Time: Acceptable Ι.

The samples were collected on September 26, 1997, extracted on October 12, 1997, and analyzed on October 13, 1997. This is within the 14-day holding time limit, from collection to extraction, and 40-day limit from extraction to analysis.

Celotex
Project TDD S05-9709-007
Analytical TDD S05-9709-805
SVOCs
Page 2

II. <u>Gas Chromatography/Mass Spectrometry (GC/MS) Tuning:</u> Acceptable

GC/MS tuning to meet ion abundance criteria using decafluorotriphenylphosphine (DFTPP) were acceptable and samples were analyzed within 12 hours of DFTPP tuning.

III. <u>Calibrations:</u>

• Initial Calibration: Acceptable

A five-point initial calibration was performed prior to analysis. All average response factors were greater than 0.05. The percent relative standard deviations (%RSDs) between response factors were less than 30% for all detected target compounds.

• Continuing Calibration: Acceptable

The percent differences of the response factors were less than 25%, as required for detected target compounds.

IV. Blank: Acceptable

A method blank was analyzed with the samples. No target compounds or contaminants were detected in the blank.

V. <u>Internal Standards: Acceptable</u>

The areas of the internal standards in the samples were within -50% to +100% of the associated calibration check standard. The retention times of the internal standards were within the 30-second control limit.

VI. Compound Identification: Acceptable

The mass spectra and retention times of the detected compounds matched those of the standards.

VII. Additional QC Checks: Acceptable

The recoveries of the surrogates used in the samples were above laboratory-established guidelines in all samples due to matrix interferences. Two target compounds were detected in only one sample, in which the associated internal standard was acceptable; therefore qualification was not required.

recycled paper ecology and environment

Telotex roject TDD S05-9709-007 analytical TDD S05-9709-805 SVOCs Page 3

VIII. Overall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in the Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990), Data Validation Procedures, Section 5.0, BNAs By GC/MS analysis. Based upon the information provided, the data are acceptable for use.

ecology and environment

AEN Job#: L72972331

Project ID: S05-9709-007

Matrix: Misc Liquid
Method: 8270

EPA Target Compound List (TCL)

Base Neutral Acids

mg/Kg

Dilution Facto	r 1.35	1 1	
Dilution Facto	1.33	1	
Method Blan	k SWD1012	SWD1012	PQL
Client I	D D-13	METHOD BLANK	
Analyte Lab ID	012	SWD1012	
3-Nitroaniline	U	U	50
Acenaphthene	Ü	Ü	10
2,4-Dinitrophenol	U	Ü	50
4-Nitrophenol	U	U	50
Dibenzofuran	U	U	10
2,4-Dinitrotoluene	U	U	10
Diethylphthalate	U	U	10
4-Chlorophenyl phenyl ether	Ü	U	10
Pluorene	U	U	10
troaniline	U	Ū	50
". Dinitro-2-methylphenol	U	U	50
N-Nitrosodiphenylamine (1)	U	U	10
4-Bromophenyl phenyl ether	U	U	10
Hexachlorobenzene	U	U	10
Pentachiorophenoi	Ü	U	50
Phenanthrene	U	U	10
Anthracene	U	U	10
Di-n-butylphthalate	U	U	10
Fluoranthene	U	Ü	10
Pyrene	U	U	10
Butyl benzyl phthalate	U	U	10
3.3'-Dichlorobenzidine	U	U	50
Benzo (a) anthracene	U	U	10
Chrysene	U	U	10
ois (2-ethylhexyl) phthalate	U	U	10
Di-n-octylphthalate	U	U	10
Benzo (b) fluoranthene	U	U	10
Benzo (k) fluoranthene	U	U	10
Benzo (a) pyrene	U	U	10
Indeno (1,2,3-cd) pyrene	U	U	10
Dibenz (a,h) anthracene	U	U	10
Benzo (g.h.i) perylene	U	U	10
Date Sampled	9/26/97		
Nate Extracted	10/12/97	10/12/97	
Analyzed	10/13/97	10/13/97	

(1) - Cannot be separated from Diphenylamine

PQL = Practical Quantitation Limit

To obtain sample-specific quantitation limit, multiply the PQL by the Dilution Factor. Page 2 of 2 $\,$

AEN Job#: L72972331

Project ID: S05-9709-007

Matrix: Misc Liquid

Method: 8270

EPA Target Compound List (TCL) Base Neutral Acids mg/Kg

Dilution Factor	1.35	1	
Dilation Lucio	1.33		
Method Blank	SWD1012	SWD1012	PQL
		METHOD	
Client ID	D-13	BLANK	
Analyte Lab ID	012	SWD1012	
Phenoi	U	U	10
Bis (2-Chloroethyl) ether	U	U	10
2-Chlorophenol	Ü	U	10
1,3-Dichlorobenzene	Ü	Ŭ	10
1,4-Dichlorobenzene	U	U	10
Benzyl Alcohol	U	U	10
1,2-Dichlorobenzene	U	U	10
2-Methylphenol	U	U	10
bis (2-Chloroisopropyl) ether	U	U	10
1-Methylphenoi	U	U	10
Nitroso-di-n-propylamine	U	U	10
iexachloroethane	U	U	10
Nitrobenzene	U	U	10
sophorone	U	U	10
2-Nitrophenol	U	U	10
2,4-Dimethylphenor	U	U	10
Benzoic Acid	U	U	50
ois (2-Chloroethoxy) methane	U	U	10
2,4-Dichlorophenol	Ļi	U	10
1,2,4-Trichlorobenzene	Ľ j	Ü	10
Naphthalene	96	U	10
4-Chloroaniline	U	U	10
Hexachlorobutadiene	U	U	10
I-Chloro-3-methylphenol	<u>U</u>	U	10
2-Methylnaphthalene	27	U	10
Hexachlorocyclopentadiene	U	U	10
2,4.6-Trichlorophenol	U	U	10
2,4,5-Trichlorophenol	U	U	50
2-Chloronaphthalene	U	U	10
2-Nitroaniline	U	U	50
Dimethylphthalate	UU	. <u>N</u>	10
Acenaphthylene	U	U	10
2,6-Dinitrotoluene	U	U	10

[·] TL = Practical Quantitation Limit

 $_{0,p,\bullet}$) obtain sample-specific quantitation limit, multiply the PQL by the Dilution Factor.

AEN Job#: L72972331 Project ID: S05-9709-007

Matrix: Misc Solid
Method: 8270

EPA Target Compound List (TCL)

Base Neutral Acids

mg/Kg

				
Dilution Factor	5	1		
		<u> </u>		
Method Blank	SWD1012	SWD1012		PQL
		METHOD		
Client ID	TAR 1	BLANK		
Analyte Lab ID	016	SWD1012		
Phenoi	UD	U		10
Bis (2-Chloroethyl) ether	U'D	U		10
2-Chlorophenol	UD	U		10
1,3-Dichloropenzene	UD	U		10
1.4-Dichloropenzene	UD	U		10
Benzyi Alcohol	UD	U		10
1,2-Dichlorobenzene	UD	Ü		10
2-Methylphenol	UD	U		10
bis (2-Chloroisopropyl) ether	UD	Ŭ		10
Methylphenol	UD	U		10
troso-di-n-propylamine	UD	U		10
exachloroethane	UD	U		10
Nitrobenzene	UD	U		10
Isophorone	UD	U		10
2-Nitrophenol	UD	Ų		10
2,4-Dimethylphenol	UD	U		10
Benzoic Acid	UD	U		50
bis (2-Chloroethoxy) methane	UD	U		10
2,4-Dichlorophenol	UD	(1		10
1,2,4-Trichlorobenzene	UD		· · ·	10
Naphthalene	UD		<u> </u>	16
4-Chloroaniline	UD	:		10
Hexachlorobutadiene	UD	(1		10
4-Chloro-3-methylphenol	UD	U		10
2-Methylnaphthalene	UD	U		10
Hexachlorocyclopentadiene	UD	U		10
2,4,6-Trichlorophenol	UD	U		10
2,4.5-Trichlorophenol	UD	U		50
2-Chloronaphthalene	UD_	U		10
2-Nitroaniline	UD	U		50
Dimethylphthalate	UD	Ü		10
Acenaphthylene	UD_	U		10
2,6-Dinitrotoluene	UD	Ŭ		10

^{🗽 🖫 =} Practical Quantitation Limit

^{• •} obtain sample-specific quantitation limit, multiply the PQL by the Dilution Factor.

AEN Job#: L72972331 Project ID: S05-9709-007

Matrix: Misc Solid
Method: 8270

EPA Target Compound List (TCL) Base Neutral Acids mg/Kg

	T	T	
]]	
Dilution Factor	5	1 1	
211211011 7 20101	<u> </u>	-	
Method Blank	SWD1012	SWD1012	PQL
		METHOD	
Client ID	TAR 1	BLANK	
1			
Analyte Lab ID	016	SWD1012	
3-Nitroaniline	UD	U	50
Acenaphthene	UD	U	10
2.4-Dinitrophenol	UD	U	50
4-Nitrophenol	UD	Ü	50
Dibenzofuran	UD	U	10
2,4-Dinitrotoluene	UD	U	10
Diethylphthalate	UD	U	10
4-Chlorophenyl phenyl ether	UD	Ŭ	10
Fluorene	UD	U	10
troaniline	U D	U	50
Dinitro-2-methylphenol	UD	U	50
N-Nitrosodiphenylamine (1)	UD	U	10
4-Bromophenyl phenyl ether	UD	U	10
Hexachlorobenzene	UD	U	10
Pentachlorophenol	UD	U	50
Phenanthrene	UD	U	10
Anthracene	L'D	U	10
Di-n-butylphthalate	UD	U	10
Fluoranthene	I.D	U į	10
Pyrene	(D)	U	10
Butyl benzyl phthalate	(, D	U	16
3,3'-Dichlorobenzidine	UD	U	50
Benzo (a) anthracene	UD	U	10
Chrysene	UD	Ü	10
bis (2-ethylhexyl) phthalate	UD	U	10
Di-n-octylphthalate	UD	U	10
Benzo (b) fluoranthene	UD	U	10
Benzo (k) fluoranthene	UD	Ŭ	10
Benzo (a) pyrene	UD	U	10
Indeno (1,2.3-cd) pyrene	UD	U	10
Dibenz (a,h) anthracene	UD	U	10
Benzo (g,h,i) perylene	UD	U	10
Date Sampled	9/26/97		
Date Extracted	10/12/97	10/12/97	
Analyzed	10/13/97	10/13/97	

(1) - Cannot be separated from Diphenylamine

PQL = Practical Quantitation Limit

To obtain sample-specific quantitation limit, multiply the PQL by the Dilution Factor. Page 2 of 2 $\,$

Telotex roject TDD S05-9709-007 analytical TDD S05-9709-805 F-Listed Solvents Page 2

II. <u>Gas Chromatography/Mass Spectrometry (GC/MS) Tuning:</u> <u>Acceptable</u>

GC/MS tuning to meet ion abundance criteria using bromofluorobenzene (BFB) or decafluorotriphenylphosphine (DFTPP) were acceptable and the sample was analyzed within 12 hours of BFB or DFTPP tuning.

III. Calibrations:

• Initial Calibration: Qualified

A five-point initial calibration was performed prior to analysis. All average response factors were greater than 0.05 except cyclohexanone; therefore, the nondetect value for this compound has been flagged "R", as required. The percent relative standard deviations (%RSDs) between response factors were less than 30% for all detected target compounds.

• Continuing Calibration: Not Applicable

The sample was analyzed following the initial calibration.

IV. Blank: Acceptable

16. 12

A method blank was analyzed with the sample. No target compounds or contaminants were detected in the blank.

V. Internal Standards: Acceptable

The areas of the internal standards in the sample were within -50% to +100% of the associated calibration check standard. The retention times of the internal standards were within the 30-second control limit.

VI. Compound Identification: Not Applicable

There were no detected target compounds in the sample.

VII. Additional QC Checks: Acceptable

The recoveries of the surrogates used in the sample and blank were within laboratory-established guidelines.

ecology and environment, inc.

International Specialists in the Environment

33 North Dearborn Street Chicago, Hinois 60602 Tel. 312/578-9243, Fax 312/578-9345

MEMORANDUM

DATE:

October 30, 1997

TC:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Organic Data Quality Review for F-Listed Solvents,

Celotex, Wilmington, Will County, Illinois

REFERENCE: Project TDD S05-9709-007 Analytical TDD S05-9709-805

Project PAN 7P0701SIXX Analytical PAN 7PAE01TAXX

The data quality assurance (QA) review of one drum sample collected from the Celotex site is complete. The sample was collected on September 26, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The sample was submitted to American Environmental Network, Schaumburg, Illinois. The laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Solid Waste 846 Methods 8260 and 8270.

Sample Identification

START Identification No.

Laboratory Identification No.

D-3

L72972331-003

Data Qualifications:

Sample Holding Time: Acceptable

The sample was collected on September 26, 1997, and analyzed on October 10, 1997. This is within the 14-day holding time limit from collection to analysis for volatiles and 14-day limit from collection to extraction, and 40-day limit from extraction to analysis, for semivolatiles.

Celotex :: Project TDD S05-9709-007 Analytical TDD S05-9709-805 F-Listed Solvents Page 3

VIII. Cverall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in the Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990), Data Validation Procedures, Section 4.0, BNAs By GC/MS and 5.0, VOAs By GC/MS analysis. Based upon the information provided, the data are acceptable for use, with the above-stated qualifications.

Data Qualifiers and Definitions:

·bugi

4 64 5

R - The sample results are rejected (analyte may or may not be present) due to gross deficiencies in quality control criteria. Any reported value is unusable. Resampling and/or reanalysis is necessary for verification. Client: Ecology & Environment Project ID: S05-9709-007

FList Solvent Scan **GCMS Volatiles Analysis**

Lab Sample Number: L72972331-003 **Method:** 8260 Client ID: D-3 Matrix: MISC LIQ

Compound	Result	PQL	Units	Dilution Factor	Sample Date	Analysis Date
Trichlorofluoromethane	<5,000	5,000	ug/Kg	500	9/26/97	10/10/97
Methylene Chloride	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
1,1,1-Trichloroethane	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
Carbon Tetrachloride	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
Benzene	<2,500	2,500	u g/K g	500	9/26/97	10/10/97
Trichloroethene	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
Toluene	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
1,1,2-Trichloroethane	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
Titrachloroethene	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
crobenzene	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
[®] lusz ylbenzene	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
Xylenes, Total	< 5,000	5,000	ug/Kg	500	9/26/97	10/10/97
o-Dichlorobenzene	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
Acetone	<5,000	5,000	ug/Kg	500	9/26/97	10/10/97
Carbon Disulfide	<2,500	2,500	ug/Kg	500	9/26/97	10/10/97
Methyl Ethyl Ketone	<5,000	5,000	ug/Kg	500	9/26/97	10/10/97
1,1,2-Trichloro-1,2,2-trifluoroethane	<5,000	5,000	ug/Kg	500	9/26/97	10/10/97
Ethyl Acetate	<25,000	25,000	ug/Kg	500	9/26/97	10/10/97
Methyl Isobetyl Ketone	<5,000	5,000	ug/Kg	500	9/26/97	10/10/97
Isobutanol	<250,000	250,000	ug/Kg	500	9/26/97	10/10/97
Ethyl Ether	<25,000	25,000	ug/Kg	500	9/26/97	10/10/97
n-Butyl Alcohol	<100,000	100,000	ug/Kg	500	9/26/97	10/10/97
2-Nitropropane	<25,000	25,000	ug/Kg	500	9/26/97	10/10/97
Cyclohexanone	<100,000	100,000	ug/Kg	500	9/26/97	10/10/97

AEN - MA Laboratory Results

Client:

IEA/American Env. Network(IL)

Project: Report Date:

. , ,

L72972331

10/17/97

AEN ID: 0072-091 Received: 10/08/97

AEN	Clies	at				Date		
#	ID	Parameter	Results	Units	PQL	Analyzed	Analyst	Method
01 01	D-3 D-3	Methanol 2- Ethoxyethanol	BQL BQL	mg/L mg/L	10 10	10/17/97 10/17/97	SM SM	GCS00400.MA GCS00400.MA
MB MB		Methanol 2- Ethoxyethanol	BQL BQL	mg/L mg/L	1 1	10/17/97 10/17/97	SM SM	GCS00400.MA GCS00400.MA
MS MS		Methanol 2- Ethoxyethanol	96 106	% %	***	10/17/97 10/17/97	SM SM	GCS00400.MA GCS00400.MA
MSD MSD		Methanol 2- Ethoxyethanol	89 105	% %	•••	10/17/9 7 10/17/9 7	SM SM	GCS00400.MA. GCS00400.MA.

Comments:

Leggi y

PQL = Practical quantitation limit. BQL = Below quantitation limit.

AEN Job#: L72972331

Project ID: S05-9709-007

Matrix: Misc. Liquid

Method: 8270

F001 - F005 BNA ANALYSIS mg/Kg

Dilution Factor	1	1		
Method Blank	SWD1012	SWD1012		Lower Limits
		METHOD		of Detection
Client ID	D-3	BLANK		(LLD) with
				no Dilution*
Analyte Lab ID	003	SWD1012		
Cresols (Cresylic Acid)	U	U		10
Nitrobenzene	U	U		10
Pyridine	U	U		10
Date Sampled	9/26/97			
Date Extracted	10/12/97	10/12/97		
Date Analyzed	10/13/97	10/13/97		

linimum Detection Limit) = LLD x DF

4699-1419

ecology and environment, inc.

international Specialists in the Environment

33 North Dearborn Street Chicago, Illinois 60602

Tel. 312/578-9243, Fax: 312/578-9345

MEMORANDUM

DATE:

October 30, 1997

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Data Quality Review for Polychlorinated Biphenyls

(PCBs), Celotex, Wilmington, Will County, Illinois

REFERENCE:

Project TDD S05-9709-007 Analytical TDD S05-9709-805

Project PAN 7P0701SIXX Analytical PAN 7PAE01TAXX

The data quality assurance (QA) review of one drum composite and one tar sample collected from the Celotex site is complete. The samples were collected on September 26, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were submitted to American Environmental Network, Schaumburg, Illinois. The laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Solid Waste 846 Method 8081.

Sample Identification

START Identification No.

Laboratory

<u>Identification No.</u>

D-17 Tar 1 L72972331-015 L72972331-016

Data Qualifications:

I. Sample Holding Time: Acceptable

The samples were collected on September 26, 1997, and extracted and analyzed on October 10, 1997. This is within the 14-day holding time limit, from collection to extraction, and 40-day limit from extraction to analysis.

1

Client: Ecology & Environmental

AEN Job#: L72972331

Project ID: S05-9709-007

Matrix: Misc Liquid

Method: 8081

RCRA/TCL PCB's mg/Kg

С	Dilution Factor	1	1			
	Method Blank	PWD1008	PWD1008			Lower Limits
			METHOD			of Detection
	Client ID	D-17	BLANK			(LLD) with
	Ī					no Dilution*
Analyte	Lab ID	015	PWD1008			
Arocior - 1016		U	U			1.0
Aroclor - 1221		U	U			2.0
Aroclor - 1232		U	U			1.0
Aroclor - 1242		U	U			1.0
Aroclor - 1248		U	U			1.0
Aroclor - 1254		U	U			1.0
Arocior - 1260		U	U			1.0
Dat colled		9/26/97	***		 	
Date tracted		10/8/97	10/8/97			
Date Analyzed		10/ 8 /97	10/8/97			

^{*}MDL (Minimum Detection Limit) = LLD x DF

Celotex Project TDD S05-9709-007 Analytical TDD S05-9709-805 PCBs Page 2

II. <u>Instrument Performance: Acceptable</u>

The chromatographic resolution was adequate in the standard and sample chromatograms. Surrogate retention times were consistent in the samples and standards.

III. Calibrations:

• Initial Calibration: Acceptable

A five-point initial calibration was performed prior to analysis. The percent relative standard deviations (%RSDs) between response factors were less than 20% for all PCBs.

• Continuing Calibration: Acceptable

The percent differences of the response factors were less than 15%.

IV. Blank: Acceptable

A method blank was analyzed with the sample. No target compounds or contaminants were detected in the blank.

V. Compound Identification: Not Applicable

There were no PCBs detected in the samples.

VI. Additional QC Checks: Acceptable

The recoveries of the surrogates used in the samples were within acceptable laboratory limits, except for the tar sample. Since PCBs were not detected in this sample qualification was not required.

VII. Overall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in the Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990), Data Validation Procedures, Section 7.0, PCBs. Based upon the information provided, the data are acceptable for use.

AEN Job#: L72972331
Project ID: S05-9709-007

Matrix: Misc Solid

Method: 8081

RCRA/TCL PCB's mg/Kg

[T		
	Dilution Factor	10	1			
ļ						
	Method Blank	PWD1008	PWD1008			Lower Limits
			METHOD			of Detection
	Client ID	TAR 1	BLANK			(LLD) with
						no Dilution*
Analyte	Lab ID	016	PWD1008			
Arocior - 1016		UD	U			1.0
Arocior - 1221		UD	U			2.0
Arocior - 1232		UD	U			1.0
Arocior - 1242		UD	Ŭ			1.0
Aroclor - 1248		UD	U			1.0
Arocior - 1254		UD	U			1.0
Arocior - 1260		UD	U			1.0
pled		9/26/97				
Datetracted		10/8/97	10/8/97			
Date Analyzed		10/8/97	10/8/97			

^{*}MDL (Minimum Detection Limit) = LLD x DF

ecology and environment, inc.

nternational Specialists in the Environment

33 North Dearborn Street Chicago, Il inois 60602

Tel. 312/578-9243. Fax: 312/578-9345

MEMORANDUM

DATE:

October 30, 1997

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Inorganic Data Quality Review for Resource

Conservation and Recovery Act (RCRA) and Toxicity Characteristic Leaching Procedure (TCLP) Metals,

Celotex, Wilmington, Will County, Illinois

REFERENCE: Project TDD S05-9709-007 Analytical TDD S05-9709-805

Project PAN 7P0701SIXX

Analytical PAN 7PAE01TAXX

The data quality assurance (QA) review of two drum and one tar samples collected from the Celotex site is complete. The samples were collected on September 26, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were submitted to American Environmental Network, Schaumburg, Illinois. The laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Solid Waste 846 Methods 1311, 6010, and 7000.

Sample Identification

START	Laboratory		
Identification No.	Identification No.		
D-8	L72972331-008		
D-16	L72972331-015		
Tar 1	L72972331-016		

Celotex Project TDD S05-9709-007 Analytical TDD S05-9709-805 RCRA, TCLP Metals Page 2

Data Qualifications:

I. <u>Sample Holding Time: Acceptable</u>

The samples were collected on September 26, 1997, and analyzed between October 7, 1997, and October 10, 1997. Analysis for mercury was performed on October 8, 1997. This is within the 6-month (28 days for mercury) holding time limit.

II. Calibration:

• <u>Initial Calibration: Acceptable</u>

Recoveries for the initial calibration verification were within 90 to 110% (80 to 120% for mercury), as required. The correlation coefficient for mercury exceeded 0.995.

• Continuing Calibration: Acceptable

All analytes included in the continuing calibration verification standard were within 90 to 110% (80 to 120% for mercury), as required.

III. <u>Blanks: Acceptable</u>

Calibration and preparation blanks were analyzed with each analytical batch. No target analytes were detected in the blanks.

IV. Overall Assessment of Data For Use: Accordable

The overall usefulness of the data is based on criteria for QA Level II as outlined in the Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990) Data Validation Procedures, Section 3.0, Metallic Inorganic Parameters. Based upon the information provided, the data are acceptable for use.

Allies I.

INORGANIC ANALYSIS DATA SHEET

	CLIENT SAMIPLE ID
Lab Name, AEN-II., Inc.	TAR I
Matrix (soi./water): Soil	Lab Sample ID L72972331-016
Level (low/med)	Date Received 9/30/97
% Solids:	

Concentration Units: mg/L

	Concentration Units mg/L				
Analyt2	Concentration	С	Q	<u>M</u>	
Arsenic	0.56	U	<u> </u>	FM	
Barium	11	U		PM	
Cadmium	0.11	U		PM	
Chronitum	0.56	U		PM	
<u>Lead</u>	0.56	U		PM	
Mercury	0.02	U		CV	
Selenium	0.11	U	*	FM	
Silver	0.56	U		PM	
i					
			1 1		
				-	
			<u> </u>		
				-	
				. –	

INORGANIC ANALYSIS DATA SHEET

	CLIENT SAMPLE ID
Lab Name AEN-IL. Inc.	D-16
Matrix (soi/water) Soil	Lab Sample ID. L72972331-014
Level (low/med):	Date Received: 9/30/97
% Solute 92	

	Concentration Units	Concentration Units ug/L				
Analyte	Concentration	С	Q	M		
Arsenic	0.27	U		FM		
Barium	6	ប		PM		
Cadmium	0.6	U	N	PM		
Chromium	1.2	L1		PM		
Lead	1.1			PM		
Mercury	0.11			CV		
Selenium	0.4	U		FM		
Silver	1.2	U	1	PM		
						
			+			
	· · · · ·					
	<u>-</u>					
			 			

INORGANIC ANALYSIS DATA SHEET

	CLIENT SAMPLE ID
Lab Name AEN-IL, Inc.	D-8
Matrix (soil/water): Soil	Lab Sample ID L72972331-008
Level (low/med).	Date Received 9/30/97
% Solide 60	

Concentration Units: mg/Kg drv weight

	Concentration Units: mg/K	Concentration Units: mg/Kg drv weight					
Analyte	Concentration	С	Q	М			
Arsenic	0.35			FM			
Barium	7.1	U		PM			
Cadmium	0.71	U	Ŋ	PM			
Chromium	1.7			PM			
Lead	3.2			PM			
Mercury	0.14	U		CV			
Selenium	0.47	U		FM			
Silver	1.4	U		PM			
		•					
			1				
			-				
			+				
		<u> </u>					

 $\|(x_1)\|^2$

ecology and environment, inc.

aternational Specialists in the Environment

33 North Dearborn Street Chicago, Hinois 60602

Tel. 312/578-9243. Fax: 312/578-9345

MEMORANDUM

DATE:

October 30, 1997

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Data Quality Review for Asbestos, Celotex,

Wilmington, Will County, Illinois

REFERENCE:

Project TDD S05-9709-007 Analytical TDD S05-9709-805

Project PAN 7P0701SIXX Analytical PAN 7PAE01TAXX

The data quality assurance (QA) review of one tar and four solid samples collected from the Celotex site is complete. The samples were collected on September 26, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were submitted to American Environmental Network, Schaumburg, Illinois. The laboratory analyses were performed according to polarized light microscopy (PLM) methodology.

Sample Identification

Laborat on No. Identificat:	
L7297233	1-016
L7297233	1
L7297233	_
	1 1

Celotex
Project TDD S05-9709-007
Analytical TDD S05-9709-805
Asbestos
Page 2

Data Qualifications:

4∤. → ′

411 € #

I. <u>Sample Holding Time: Acceptable</u>

The samples were collected on September 26, 1997, and analyzed on October 3, 1997. The Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990) does not specify holding times for this parameter.

II. Overall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in OSWER Data Validation Procedures, Section 9.0, Generic Data Validation Procedures. Based upon the information provided, the data are acceptable for use.

ecology and environment, inc.

nternational Specialists in the Environment

33 North Dearborn Street Chicago, Illinois 60602

Tel. 312/578-9243, Fax: 312/578-9345

MEMORANDUM

DATE:

October 30, 1997

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Data Quality Review for Flash Point and pH, Celotex,

Wilmington, Will County, Illinois

REFERENCE:

Project TDD S05-9709-007 Analytical TDD S05-9709-805

Project PAN 7P0701SIXX

Analytical PAN 7PAE01TAXX

The data quality assurance (QA) review of 14 drum waste samples collected from the Celotex site is complete. The samples were collected on September 26, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were submitted to American Environmental Network, Schaumburg, Illinois. The laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Solid Waste 846 Methods 1010 and 9045.

Sample Identification

START	Macboratory
Identification No.	Identification No.
D-1	L72972331-001
D-2	L72972331-002
D-3	L72972331-003
D-4	L72972331-004
D-5	L72972331-005
D-6	L72972331-006
D-7	L72972331-007
D-8	L72972331-008
D-9	L72972331-009
D-10	L72972331-010
D-12	L72972331-011
D-13	L72972331-012
D-14	L72972331-013
D-16	L72972331-014

Telotex

Toject TDD S05-9709-007

That is a second to the second to the

Data Qualifications:

4. ...

I. Sample Holding Time: Acceptable

The samples were collected on September 26, 1997, and analyzed on September 30, 1997, for pH, and on October 6, 1997, for flash point. The Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990) does not specify holding times for these parameters.

II. <u>Calibrations: Acceptable</u>

The calibrations for flash point and pH were verified before sample analyses. The calibration for flash point was verified using xylene, and the calibration for pH was verified following analyses of three standard solutions.

III. Overall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in OSWER Data Validation Procedures, Section 9.0, Generic Data Validation Procedures. Based upon the information provided, the data are acceptable for use.

IEA Job#: L72972331 Project ID: S05-9709-007

Wet Chemistry Analytes

Lab	Sample ID: 001 Client ID: D-1	Matrix: Misc. Liquid Sample Date: 9/26/97			
Analyte	Method	Result	PQL	Units	Date Analyzed
pН	150.1	14.9	 .	pH Units	9/30/97

Lab Sample ID: Client ID:			Matrix: Misc. Liquid Sample Date: 9/26/97			
Analyte	Method	Result	PQL	Units	Date Analyzed	
Flashpoint	1010	134		°F	10/6/97	

Opp. o

Lab Sample ID Client ID		Matrix: Misc. Liquid Sample Date: 9/26/97			
Analyte	Method	Result	PQL	Units	Date Analyzed
Flashpoint	1010	>200		°F	10/6/97

Lab Sample ID: Client ID:		Matrix: Misc. Liquid Sample Date: 9/26/97				
Analyte	Method	Result	PQL	Units	Date Analyzed	
рН	150.1	15.2		pH Units	9/30/97	

<u>.</u>	Lab Sample ID: Client ID:		Matrix: Misc. Liquid Sample Date: 9/26/97			
Analyte		Method	Result	PQL	Units	Date Analyzed

pН

15.5

150.1

--- pH Units

9/30/97

IEA Job#: L72972331 Project ID: S05-9709-007

Wet Chemistry Analytes

Lab Sample ID: 006 Client ID: D-6			Matrix: Misc. Liquid Sample Date: 9/26/97		
Analyte	Method	Result	PQL	Units	Date Analyzed
рН	150.1	13.4	 .	pH Units	9/30/97

Lab Sam	iple ID: 007		Matrix: Misc. Liquid				
Cli	ient ID: D-7	Sample Date: 9/26/97					
					<u> </u>		
Analyte	Method	Result	POL	Units	Date Analyzed		

pH 150.1 13.6 --- pH Units 9/30/97

 $\#_{\mathbb{H}} r'$

Lab Sample ID: 008 Client ID: D-8			Matrix: Soil Sample Date: 9/26/97				
Analyte	Method	Result	PQL	Units	Date Analyzed		
рН	9045	9.54		pH Units	9/30/97		

Lab Sample ID: Client ID:		Matrix: Misc. Liquid Sample Date: 9/26/97				
Analyte	Method	Result	PQL	Units	Date Analyzed	
Flashpoint	1010	>200		°F	10/6/97	

au'	Lab Sample ID: Client ID:		•	Matrix: Misc. Liquid Sample Date: 9/26/97				
Analyte		Method	Result	PQL	Units	Date Analyzed		

Flashpoint 1010 >200 --- °F 10/6/97

Client: Ecology & Environmental IEA Job#: L72972331

IEA Job#: L72972331
Project ID: S05-9709-007

Wet Chemistry Analytes

Lab Sample ID: 011 Client ID: D-12			Matrix: Misc. Liquid Sample Date: 9/26/97		
Analyte	Method	Result	PQL	Units	Date Analyzed
Flashpoint	1010	>200	 .	°F	10/6/97

Lab Sample ID: 012 Client ID: D-13			Matrix: Misc. Liquid Sample Date: 9/26/97		
Analyte	Method	Result	PQL	Units	Date Analyzed
Flashpoint	1010	81		°F	10/6/97

411H

Lab Sample ID: 013 Client ID: D-14			Matrix: Misc. Liquid Sample Date: 9/26/97		
Analyte	Method	Result	PQL	Units	Date Analyzed
Flashpoint	1010	67		°F	10/19/97

Lab Sample ID: Client ID:			Matrix: Soil Sample Date: 9/26/97		
Analyte	Method	Result	PQL	Units	Date Analyzed
pН	9045	13.7		pH Units	9/30/97

POLARIZED LIGHT MICROSCOPY RESULTS

AEN/IEA

STAT Client: 1270

Date Received: 10/3/97

STAT Batch: 74196

Date Analyzed: 10/3/97

Report Date: 10/3/97

Cleint Reference: L72972331

	% Type of	Non-asbestos	
Sample #	Asbestos	Components	Comments
-			
Tar I		1-5% Cellulose	Quartz 10-5%
		90-95% Binder	
-1	35-40% Chrysotile	60-65% Binder	
N- A-2		1-5% Cellulose	Perlite 1-5%
· •		90-95% Binder	
A-3	5-10% Chrysotile	80-85% Binder	Glass 5-10%
A-4	15-20% Chrysotile	65-70% Binder	
	10-15% Amosite		

MMF: Man made Mineral Fibers

---: Below detection limits by PLM methodology

ecology and environment, inc.

nternational Specialists in the Environment

33 North Dearborn Street Chicago, Illinois 60602

Tel. 312/578-9243. Fax: 312/578-9345

MEMORANDUM

DATE:

January 22, 1998

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Inorganic Data Quality Review for Resource

Conservation and Recovery Act (RCRA) Metals, Celotex,

Wilmington, Will County, Illinois

REFERENCE: Project TDD S05-9709-007 Analytical TDD S05-9712-804

Project PAN 7P0701SIXX Analytical PAN 7DAD01TAXX

The data quality assurance (QA) review of two tar samples collected from the Celotex site is complete. The samples were collected on December 11, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were submitted to NET Laboratories, Inc., Bartlett, Illinois. The laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Solid Waste 846 Methods 6010 and 7000.

Sample Identification

START Identification No.

Laboratory Identification No.

Tar 2 Tar 3 448777 448778

Data Qualifications:

Sample Holding Time: Acceptable I.

The samples were collected on December 11, 1997, and analyzed between December 17 and December 19, 1997. Analysis for mercury was performed on December 19, 1997. This is within the 6-month (28 days for mercury) holding time limit.

Tex TDD S05-9709-007 Allelytical TDD S05-9712-804 RCRA Metals Page 2

II. <u>Calibration</u>:

Initial Calibration: Acceptable

Recoveries for the initial calibration verification were within 90 to 110% (80 to 120% for mercury), as required. The correlation coefficient for mercury exceeded 0.995.

1990

- MARKET STREET

1920年11日 11日

网络乔克·纳克克

THE PERSON AS

organismos s

198001-354-974

Marie Land

ekty er till i

4 - 20 - 20-20

• Continuing Calibration: Acceptable

All analytes included in the continuing calibration verification standard were within 90 to 110% (80 to 120% for mercury), as required.

III. <u>Blanks: Acceptable</u>

•

Calibration and preparation blanks were analyzed with each analytical batch. No target analytes were detected in the blanks.

Image: Overall Assessment of Data For Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in the Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990) Data Validation Procedures, Section 3.0, Metallic Inorganic Parameters. Based upon the information provided, the data are acceptable for use.

ecology and environment, inc.

nternational Specialists in the Environment

33 North Dearborn Street Chicago, Illinois 60602

Tel. 312/578-9243, Fax: 312/578-9345

MEMORANDUM

DATE:

January 22, 1998

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Data Quality Review for Polynuclear Aromatic Hydrocarbons (PAHs), Celotex, Wilmington, Will

County, Illinois

REFERENCE:

Mary C

Project TDD S05-9709-007 Analytical TDD S05-9712-804

Project PAN 7P0701SIXX Analytical PAN 7DAD01TAXX

The data quality assurance (QA) review of two tar samples collected from the Celotex site is complete. The samples were collected on December 11, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were submitted to NET Laboratories, Inc., Bartlett, Illinois. The laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Solid Waste 846 Method 8310.

Sample Identification

START	Laboratory
Identification No.	<u>Identification No.</u>
m 0	440777

Tar 2 Tar 3

448777 448778

Data Qualifications:

Sample Holding Time: Acceptable

The samples were collected on December 11, 1997, extracted on December 15, 1997, and analyzed on December 23, 1997. This is within the 14-day holding time limit, from collection to extraction, and 40-day limit from extraction to analysis.

ecology and environment, inc.

International Specialists in the Environment

33 North Dearborn Street Chicago, Illinois 60602 Tel. 312/578-9243. Fax: 312/578-9345

MEMORANDUM

DATE:

January 22, 1998

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Data Quality Review for Polychlorinated Biphenyls

(PCBs), Celotex, Wilmington, Will County, Illinois

REFERENCE:

Project TDD S05-9709-007 Analytical TDD S05-9712-804

Project PAN 7P0701SIXX

Analytical PAN 7DAD01TAXX

The data quality assurance (QA) review of two tar samples collected from the Celotex site is complete. The samples were collected on December 11, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were submitted to NET Laboratories, Inc., Bartlett, Illinois. The laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Solid Waste 846 Method 8082.

Sample Identification

START Identification No.

Laboratory Identification No.

Tar 2

448777

Tar 3

448778

Data Qualifications:

Sample Holding Time: _ Acceptable Ι.

The samples were collected on December 11, 1997, extracted on December 11, 1997, and analyzed on December 18, 1997. This is within the 14-day holding time limit, from collection to extraction, and 40-day limit from extraction to analysis.

te contr

Celctex
Project TDD S05-9709-007
Analytical TDD S05-9712-804
PCBs
Page 2

II. <u>Instrument Performance: Acceptable</u>

The chromatographic resolution was adequate in the standard and sample chromatograms. Surrogate retention times were consistent in the samples and standards.

III. <u>Calibrations:</u>

• Initial Calibration: Acceptable

A five-point initial calibration was performed prior to analysis. The percent relative standard deviations (%RSDs) between response factors were less than 20% for detected FC3s.

• Continuing Calibration: Acceptable

The percent differences of the response factors were less than 15%, for detected PCBs.

IV. 3lank: Acceptable

the of

A method blank was analyzed with the sample. No target compounds or contaminants were detected in the blank.

V. <u>Compound Identification: Acceptable</u>

The chromauographic pattern of the PCBs identified in the samples matched those found in the standards.

VI. Additional QC Checks: Acceptable

The recoveries of the surrogates used in the samples were within acceptable laboratory limits.

VII. Overall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in the Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990), Data Validation Procedures, Section 7.0, PCBs. Based upon the information provided, the data are acceptable for use.

ecology and environment, inc.

ternational Specialists in the Environment

33 North Dearborn Street Chicago, Illinois 60602

Tel. 312/578-9243. Fax: 312/578-9345

MEMORANDUM

DATE:

January 22, 1998

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

THROUGH:

Mary Jane Ripp, START Assistant Program Manager,

E & E, Chicago, Illinois

SUBJECT:

Data Quality Review for Asbestos, Celotex,

Wilmington, Will County, Illinois

REFERENCE:

Project TDD S05-9709-007 Analytical TDD S05-9712-804

Project PAN 7P0701SIXX Analytical PAN 7DAD01TAXX

The data quality assurance (QA) review of two solid samples collected from the Celotex site is complete. The samples were collected on December 11, 1997, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were submitted to NET, Bartlett, Illinois. The laboratory analyses were performed according to polarized light microscopy (PLM) methodology, in accordance with EPA 40 CFR Part 763 Appendix A to Subpart F.

Sample Identification

START	Laboratory						
Identification No.	<u>Identification No.</u>						
							
A5	448779						
A6	448780						

Data Qualifications:

Sample Holding Time: Acceptable Ι.

The samples were collected on December 11, 1997, and analyzed on December 23, 1997. The Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990) does not specify holding times for this parameter.

Celotex
Project TDD S05-9709-007
Analytical TDD S05-9709-805
Asbestos
Page 2

 $4\alpha^{-2}$

W112 F

II. Overall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in OSWER Data Validation Procedures, Section 9.0, Generic Data Validation Procedures. Based upon the information provided, the data are acceptable for use.

Tel: (630) 289-3100 Fax: (630) 289-5445 Rockford Division 3548 35th Street Rockford, IL 61109 Tel: (815) 874-2171 Fax: (815) 874-5622 (800) 807-2877

ANALYTICAL REPORT

Mr. Dave Hendren ECOLOGY & ENVIRONMENT, INC 33 N. Dearborn Suite 900

Sample No. :

12/29/1997

448777

Chicago, IL 60602

NET Job No.: 97.15143

Sample Description:

Building 1 Basement - Tar 2

Cetotex 505-9709-007

12/11/1997 Date Taken:

Date Received: 12/12/1997

Time Taken: 10:25 IEPA Cert. No. 100221

Time Received: 13:40 WDNR Cert. No. 999447130

Parameter	Results		Units	Date of Analysis	Method PQL	Analyst		th No. /Run	Analytical Method
Solids, Total	95.3		1	12/15/1997	0.1	tt1		2031	2540 (4)
Arsenic, GFAA	3.0	M+	mg/kg	12/17/1997	0.50	mhp	80	437	7060 (1)
Parium, ICP	32		mg/kg	12/18/1997	1.0	kdw	906	1633	601 0B (9)
imium, ICP	2.0		mg/kg	12/18/1997	0.50	kdw	906	1618	601 0B (9)
¶∥⊪″omium, ICP	50		mg/kg	12/18/1997	2.0	kdw	906	1604	6010B(9)
Lead, ICP	100		mg/kg	12/18/1997	4.3	kdw	90 6	1826	6010B(9)
Mercury, CVAA	<0.042		mg/kg	12/18/1997	0.040	jtt	562	672	7471A (9)
Selenium, GFAA	<0.26	M+	mg/kg	12/17/1997	0.25	mhp	80	367	7740 (1)
Silver, AA	<2.1		mg/kg	12/17/1997	2.0	jtt	3 79	481	7760 (1)
Prep, 8310 PNAs NON-AQUEOUS PNA CMPDS - 8310 NONAQUEOUS	extracte	d		12/15/1997		btl	621		3540 (1)
Acenaphinene	<16		mg/Kg	12/23/1997	0.560	keh	621	1494	8310 (1)
Acenaphthriens	<16		mg/Kg	12/23/1997	J. 560	kei	621	1494	8310 (1)
Anthracene	<16		mg/Kg	12/23/1997	0.640	keh	621	1494	8310 (1)
Benzo (a' anchracene	<16		mg/Kg	12/23/1997	0.0026	keh	621	1494	8310 (1)
Benzo(b) fluoranthene	<16		mg/Kg	12/23/1997	0.0036	keh	621	1494	8310 (1)
Benzo(k) fluoranthene	<16		mg/Kg	12/23/1997	0.0034	keh	621	1494	8310 (1)
Benzo(a)pyrene	<16		mg/Kg	12/23/1997	0.0046	keh	621	1494	8310 (1)
Benzo(ghi)perylene	<16		mg/Kg	12/23/1997	0.051	keh	621	1494	8310 (1)
Chrysene	<16		mg/Kg	12/23/1997	0.03	keh	621	1494	8310 (1)
Dibenzo(a,h)anthracene	<16		mg/Kg	12/23/1997	0.006	keh	621	1494	8310 (1)
Fluoranthene	<16		mg/Kg	12/23/1997	0.660	keh	621	1494	8310 (1)
Fluorene	<16		mg/Kg	12/23/1997	0.14	keh	621	1494	8310 (1)
Indeno(1,2,3-cd)pyrene	<16		mg/Kg	12/23/1997	0.0086	keh	621	1494	8310 (1)
Naphthalene	<16		mg/Kg	12/23/1997	0.325	keh	621	1494	8310 (1)
Phenanthrene	<16		mg/Kg	12/23/1997	0.660	keh	621	1494	8310 (1)

M+ : Analyte quantified by MSA due to low spike recovery.

⁻vated PNA reporting limits due to sample matrix.

Tel: (630) 289-3100 Fax: (630) 289-5445

Rockford Division 3548 35th Street Rockford, IL 61109 Tel: (815) 874-2171

Fax: (815) 874-5622 (800) 807-2877

ANALYTICAL REPORT

Mr. Dave Hendren ECOLOGY & ENVIRONMENT, INC 33 N. Dearborn Suite 900

Chicago, IL 60602

12/29/1997

Sample No. : 448777

NET Job No.: 97.15143

Sample Description:

Building 1 Basement - Tar 2 Cetotex 505-9709-007

12/11/1997 Date Taken: Time Taken: 10:25 IEPA Cert. No. 100221

Date Received: 12/12/1997

Time Received: 13:40 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst		h No. o/Run	-	ytical Lhod
Pyrene	<16	mg/Kg	12/23/1997	0.18	keh	621	1494	8310	(1)
Surr: p-Terpnenyl	Diluted out	*	12/23/1997	43-125	keh	621	1494	8310	(1)
B'S NON-AQUEOUS - 8382									
₩	<5,000	ug/kg	12/18/1997	40	lac	215	5 9 5	8C 82	(1)
PCB-1221	<5,000	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
PCB-1232	<5,000	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
PCB-1242	10,100	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
PCB-1248	<5,000	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
PCB-1254	<5,000	ug/kg	12/18/1997	40	lac	215	595	80 82	(1)
PCB-1260	<5,000	ug/kg	12/18/1997	40	lac	215	5 ₹ 5	8 3 8 2	(1)
Decachlorobiphenyl (Surr)	92.0	*	12/18/1997	NA	lac	215	5 9 5	80 82	(1)
2,4,5,6-TCMX (Surr)	35.0	*	12/18/1097	NA	lac	215	5 9 5	80 82	(1)

PCB analysis performed at a 125x dilution due to sample matrix.

Tel: (630) 289-3100 Fax: (630) 289-5445

Rockford Division 3548 35th Street Rockford, IL 61109

Tel: (815) 874-2171 Fax: (815) 874-5622 (800) 807-2877

ANALYTICAL REPORT

Mr. Dave Hendren ECOLOGY & ENVIRONMENT, INC 33 N. Dearborn Suite 900

12/29/1997 Sample No. :

448778

Chicago, IL 60602

NET Job No.:

97.15143

Sample Description:

Building 1 Basement - Tar 3

Cetotex 505-9709-007

12/11/1997 Date Taken: Time Taken: 10:35 IEPA Cert. No. 100221

Date Received: 12/12/1997

Time Received: 13:40 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of	Method	Analyst	Bato	h No.	Analytical
			Analysis	PQL		Prep	/Run	Method
			12/15/1007		ttl		2031	2540 (4)
Solids, Total	84.1	*	12/15/1997	0.1		30	437	7060 (1)
Arsenic, GFAA	2.8	mg/kg	12/17/1997	0.50	mhp		-	6010B(9)
Parium, ICP	24	mg/kg	12/18/1997	1.6	kdw	906	1633	
::rium, ICP	0.78	mg/kg	12/18/1997	0.50	kdw	906	1618	6010B(9)
#HF :Omium, ICP	20	mg/kg	12/18/1997	2.0	kdw	906	1604	6010B(9)
Lead, ICP	23	mg/kg	12/19/1997	4.0	kdw	906	1926	6010B(9)
Mercury, CVAA	<0.048	mg/kg	12/18/1997	0.040	jtt	5 62	672	7 471A (9)
Selenium, GFAA	<0.30	mg/kg	12/17/1997	0.25	mhp	80	367	7740 (1)
Silver, AA	<2.4	mg/kg	12/17/1997	2.0	jtt	3 79	431	7760 (1)
			12/15/1997		btl	621		3540 (1)
Prep, 8310 FNAs NON-AQUEOUS	extracted		12/15/1997		DCI	021		3540 (1)
PNA CMPDS - 3310 NCNAQUEOUS					1 . 1	621	1.0.	2230 (2)
Acenaphrhene	< 24	mg/Kg	12/23/1997	0.560	keh	621	1494	8310 (1)
Acenaphrhylene	< 24	mg/Kg	12/23/1997	2.660	keh	521	1494	9310 (1)
Anthracene	<24	mg/Kg	12/23/1997	0.560	keh	621	1494	8310 (1)
Benzo(a) anthracene	<24	mg/Kg	12/23/1997	0.0026	keh	621	1494	8310 (1)
Benzo(b) fluoranthene	<24	mg/Kg	12/23/1997	0.0036	keh	621	1494	8310 (1)
Benzo(k) fluoranthene	<24	mg/Kg	12/23/1997	0.0034	keh	621	1494	8310 (1)
Benzo(a)pyrene	<24	mg/Kg	12/23/1997	0.0046	keh	621	1494	8310 (1)
Benzo(ghi)perylene	<24	mg/Kg	12/23/1997	0.051	keh	621	1494	8310 (1)
Chrysene	<24	mg/Kg	12/23/1997	0.03	keh	621	1494	8310 (1)
Dibenzo(a,h)anthracene	<24	mg/Kg	12/23/1997	0.006	keh	621	1494	8310 (1)
Fluoranthene	<24	mg/Kg	12/23/1997	0.660	keh	621	1494	8310 (1)
Fluorene	<24	mg/Kg	12/23/1997	0.14	keh	621	1494	8310 (1)
Indeno(1,2,3-cd)pyrene	<24	mg/Kg	12/23/1997	0.0086	keh	621	1494	8310 (1)
Naphthalene	<24	mg/Kg	12/23/1997	0.025	keh	621	1494	8310 (1)
Phenanthrene	<24	mg/Kg	12/23/1997	0.660	keh	621	1494	8310 (1)

rated PNA reporting limits due to sample matrix.

Tel: (630) 289-3100 Fax: (630) 289-5445

Rockford Division 3548 35th Street Rockford, IL 61109 Tel: (815) 874-2171 Fax: (815) 874-5622 (800) 807-2877

ANALYTICAL REPORT

Mr. Dave Hendren

ECOLOGY & ENVIRONMENT, INC

33 N. Dearborn

Suite 900

Chicago, IL 60602

12/29/1997

Sample No. :

448778

NET Job No.:

97.15143

Sample Description:

Building 1 Basement - Tar 3 Cetotex 505-9709-007

12/11/1997 Date Taken:

Time Taken: 10:35 IEPA Cert. No. 100221

12/12/1997 Date Received:

Time Received: 13:40 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of	Method	Analyst	Bato	h No.	Analy	tical
			Analysıs	PQL		Prep	/Run	Met	hod
Pyrene	<24	mg/Kg	12/23/1997	0.18	keh	621	1494	8310	(1)
Surr: p-Terphenyl	Diluted out	*	12/23/1997	43-125	keh	621	1494	8310	(1)
S NON-AQUEOUS - 8082									
र्फ ^त -1016	<20,000	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
PCB-1221	<20,000	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
PCB-1232	<20,000	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
PCB-1242	<20,000	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
PCB-1248	<20,000	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
PCB-1254	<20,000	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
PCB-1260	<20,000	ug/kg	12/18/1997	40	lac	215	595	8082	(1)
Decachloropiphenyl (Surr)	84.0	ŧ	12/18/1997	NA	lac	215	595	8082	(1)
2,4,5,6-TCMX (Surr)	76.0	ŧ	12/18/1997	NA	lac	215	595	8082	(1)

- wrated PCB reporting limits due to sample matrix.

4 7

Tel: (630) 289-3100 Fax: (630) 289-5445

Rockford Division 3548 35th Street Rockford, IL 61109 Tel: (815) 874-2171

Fax: (815) 874-5622 (800) 807-2877

ANALYTICAL REPORT

Mr. Dave Hendren ECOLOGY & ENVIRONMENT, INC 33 N. Dearborn

Suite 900

Chicago, IL 60602

12/29/1997

Sample No. : 448779

NET Job No.: 97.15143

Sample Description:

Building 1 Basement - A5

Cetotex 505-9709-007

12/11/1997 Date Taken: Time Taken: 10:40

IEPA Cert. No. 100221

Date Received: 12/12/1997

Time Received: 13:40 WDNR Cert. No. 999447130

Parameter

Results

Units Date of Method Analyst Batch No. Analytical

Analysis

PQL

Prep/Run Method

Asbestos/Bulk

Million t

See Attached Analytical Report from NET Chicago Division

Tel: (630) 289-3100 Fax: (630) 289-5445 Rockford Division 3548 35th Street Rockford, IL 61109

Tel: (815) 874-2171 Fax: (815) 874-5622 (800) 807-2877

ANALYTICAL REPORT

Mr. Dave Hendren ECOLOGY & ENVIRONMENT, INC

33 N. Dearborn

Suite 900

Chicago, IL 60602

12/29/1997

Sample No. : 448780

NET Job No.: 97.15143

Sample Description: Building 1 Basement - A6

Cetotex 505-9709-007

Date Taken: 12/11/1997

Time Taken: 10:45 IEPA Cert. No. 100221 Date Received: 12/12/1997

Time Received: 13:40 WDNR Cert. No. 999447130

Parameter

Resuits

Units Date of Method Analyst Batch No. Analytical

Analysis

PQL

Prep/Run

Method

Asbestos/Bulk

March 1

See Attached Analytical Report from NET Chicago Division

Chicago Division 222 South Morgan Chicago, IL 60607 Tel: (312) 666-4469

Fax: (312) 666-4355

F.D.A. EST. REG. NO. 14-16923

ANALYTICAL REPORT

NET MIDWEST - BARTLETT 850 W. Bartlett Road Bartlett, IL 60103

Attn: Mr. Brian Warner

Sample Description: #448779 DATE: 12/23/1997

Job Number: 97.04843 Sample Number: 217017 Date Received: 12/16/1997

Page 1

	ASBESTOS		
	Sample Color	TAN	
Q q −0	FIBROUS ASBESTIFORMS	•	
	Actinolite/Tremolite	ND	
	Amosite	ND	
	Anthophylite	ND	
	Chrysotile	ND	
	Crocidolite	ND	
	Total Fibrous Asbestiforms	ND	
	OTHER FIBROUS COMPONENTS	•	
	Cellulose	ND	
	Fibrous Glass	3	ફ
	Synthetics	10	ૄૺ
	Other	ND	
	NONFIBROUS COMPONENTS	87	8

All analyses are performed in accordance with EPA 40 CFR, Part 763 Appendix A to Subpart F. ND means less than 1%, and % refers to percent by volume.

Theresa Bednar Date of Analysis Analyst

Jaime Maceda, Manager NET Midwest Inc. Chicago Division

Chicago Division 222 South Morgan Chicago, IL 60607 Tel: (312) 666-4469

Tel: (312) 666-4469 Fax: (312) 666-4355

F.D.A. EST. REG. NO. 14-16923

ANALYTICAL REPORT

NET MIDWEST - BARTLETT 850 W. Bartlett Road Bartlett, IL 60103

Attn: Mr.Brian Warner

Sample Description: #448780

DATE: 12/23/1997

Job Number: 97.04843 Sample Number: 217018 Date Received: 12/16/1997

Page 2

ASBESTOS		
Sample Color	OW	
FIBROUS ASBESTIFORMS	•	
Actinolite/Tremolite	ND	
Amosite	25	8
Anthophylite	ND	
Chrysotile	ND	
Crocidolite	20	% %
Total Fibrous Asbestiforms	45	8
OTHER FIBROUS COMPONENTS	•	
Cellulose	ND	
Fibrous Glass	ND	
Synthetics	ND	
Other	ND	
NONFIBROUS COMPONENTS	55	%

All analyses are performed in accordance with EPA 40 CFR, Part 763 Appendix A to Subpart F. ND means less than 1%, and % refers to percent by volume.

Theresa Bednar Date of Analysis

Analyst

41.11

4641

Jaime Maceda, Manager NET Midwest Inc. Chicago Division

ecology and environment, inc.

International Specialists in the Environment

33 North Dearborn Street Chicago, Illinois 60602

Tel. 312/578-9243, Fax: 312/578-9345

MEMORANDUM

DATE:

May 4, 1998

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

Nabil Fayoumi, START Chemist, E & E, Chicago, NF

Illinois

THROUGH:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

SUBJECT:

Bulk Asbestos Data Quality Review, Celotex,

Wilmington, Will County, Illinois

REFERENCE:

Project TDD S05-9802-002 Analytical TDD S05-9802-807

Project PAN 8F0201SIXX Analyt

Analytical PAN 8FAG01TAXX

The data quality assurance (QA) review of two tar samples collected from the Celotex is complete. The samples were collected on February 17, 1998, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were analyzed by American Environmental Network, Schaumburg, Illinois. The laboratory analysis were performed using polarized light microscopy (PLM).

Sample Identification

START
Identification No.
Tar 4

Tar 5

Laboratory
Identification No.
L72980430-003
L72880430-006

The samples were visually examined by polarized light microscopy (PLM). In this method, the asbestos minerals are identified by their form and characteristic indices of refraction (I.R.). The two tar samples contained no asbestos mineral.

OSWER Directive 9360.4-01 does not pertain to asbestos mineral identification. Based upon reviewer judgement, the data are acceptable for use.

I. Overall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in OSWER Data Validation Procedures, Section 9.0, Generic Data Validation Procedures. Based upon the information provided, the data are acceptable for use.

ecology and environment. inc.

International Specialists in the Environment

33 North Dearborn Street Chicago, Illinois 60602

Tel. 312/578-9243, Fax: 312/578-9345

MEMORANDUM

DATE:

May 4, 1998

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

Nabil Fayoumi, START Chemist, E & E, Chicago, NF

Illinois

THROUGH:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

SUBJECT:

Generic Data Quality Review for Total Petroleum

Hydrocarbons (TPH), Celotex, Wilmington, Will County,

Illinois

REFERENCE: Project TDD S05-9802-002 Analytical TDD S05-9802-807

Project PAN 8F0201SIXX Analytical PAN 8FAG01TAXX

The data quality assurance (QA) review of six sediment samples and two tar samples collected from the Celotex is complete. samples were collected on February 17, 1998, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were submitted to American Environmental Network, Schaumburg, Illinois, for analyses. The laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Method 418.1.

Sample Identification

START Identification No.	Laboratory <u>Identification No</u> .
Sediment 1	L72980430-001
Sediment 2	L72980430-002
Tar 4	L72980430-003
Sediment 3	L72980430-004
Sediment 4	L72980430-005
Tar 5	L72980430-006
Sediment 5	L72980430-007
Sediment 6	L72980430-008

lite of 1

Celotex Project TDD S05-9802-002 Analytical TDD S05-9802-807 TPH Page 2

Data Qualifications:

4.4

46.11.1

I. Sample Holding Time: Acceptable

The samples were collected on February 17, 1998, and analyzed on March 5, 1998. The OSWER Directive 9360.4-01 does not include criteria regarding holding time for this method.

II. <u>Calibrations: Acceptable</u>

The calibration for total petroleum hydrocarbons was verified before sample analysis.

III. Cverall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in OSWER Data Validation Procedures, Section 9.0, Generic Data Validation Procedures. Based upon the information provided, the data are acceptable for use.

ecology and environment, inc.

International Specialists in the Environment

33 North Dearborn Street Chicago, Illinois 60602

Tei. 312/578-9243, Fax: 312/578-9345

MEMORANDUM

DATE:

May 4, 1998

TO:

Brendan McLennan, START Project Manager, E & E,

Chicago, Illinois

FROM:

Nabil Fayoumi, START Chemist, E & E, Chicago, NF

Illinois

THROUGH:

David Hendren, START Analytical Services Manager,

E & E, Chicago, Illinois

SUBJECT:

Organic Data Quality Review for Semivolatile Organic

Compounds (SVOCs), Celotex, Wilmington, Will County,

Illinois

REFERENCE:

Project TDD S05-9802-002 Analytical TDD S05-9802-807

Project PAN 8F0201SIXX

Analytical PAN 8FAG01TAXX

The data quality assurance (QA) review of six sediment samples and two tar samples collected from Celotex is complete. The samples were collected on February 17, 1998, by the Superfund Technical Assessment and Response Team (START) contractor, Ecology and Environment, Inc. (E & E). The samples were analyzed by American Environmental Network, Schaumburg, Illinois. laboratory analyses were performed according to the United States Environmental Protection Agency (U.S. EPA) Solid Waste 846 Method 8270.

Sample Identification

Ja	mpre ruciterracacaoni
START	Laboratory
Identification No	<u>. Identification No.</u>
Sediment 1	L72980430-001
Sediment 2	L72980430-002
Tar 4	L72980430-003
Sediment 3	L72980430-004
Sediment 4	L72980430-005
Tar 5	L72880430~006
Sediment 5	L72880430-007
Sediment 6	L72880430-008

Data Qualifications:

Sample Holding Time: Acceptable Ι.

The samples were collected on February 17, 1998, extracted on February 23, 1998, and analyzed between February 24 and Celotex Project TDD S05-9802-002 Analytical TDD S05-9802-807 SVOCs Page 2

February 26, 1998. This is within the 14-day holding time limit, from collection to extraction, and 40-day limit from extraction to analysis.

II. <u>Gas Chromatography/Mass Spectrometry (GC/MS) Tuning:</u> Acceptable

GC/MS tuning to meet ion abundance criteria using decafluorotriphenylphosphine (DFTPP) were acceptable.

III. Calibrations:

• Initial Calibration: Acceptable

A five-point initial calibration was performed prior to analysis. All average response factors were greater than 0.05. The percent relative standard deviations (%RSDs) between response factors were less than 30% for all target compounds.

• Continuing Calibration: Acceptable

The percent differences of the response factors were less than 25%, as required for target compounds.

IV. Blanks: Acceptable

A method blank was analyzed with the samples. No target compounds were detected above reportable limits.

V. Internal Standards: Qualified

The areas of the internal standards in samples Sediment 1, Sediment 2, Sediment 3, Tar 4, and Tar 5 were below the 50% to +100% limits of the associated calibration check standard; therefore nondetected compounds in the associated samples were flagged J as estimated. The retention times cf the internal standards were within the 30-second control limit.

VI. Compound Identification: Acceptable

No target compounds were detected above reportable limits.

VII. Overall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II as outlined in the Office of Solid Waste and

Celotex Project TDD S05-9802-002 Analytical TDD S05-9802-807 SVOCs Page 3

Emergency Response (OSWER) Directive 9360.4-01 (April 1990), Data Validation Procedures, Section 4.0, SVOCs By GC/MS analysis. Based upon the information provided, the data are acceptable for use, with the above-stated qualifications.

Data Qualifiers and Definitions:

4. . . p

J - The associated numerical value is an estimated quantity because the reported concentrations were less than required detection limits or quality control criteria were not met.

AEN Job#: L72980430 Project ID: S05-9802-002

Matrix: Soil

Method: 8270

EPA Target Compound List (TCL) **Base Neutral Acids** ug/Kg-Dry Weight

Percent Solids	73%	73%	74%	74%	90%	
Dilution Factor	1	1	2	1	50	†
Ditation Factor	_ 	<u> </u>				i
Method Blank	SS0223	SS0223	SS0223	SS0223	SS0223	PQL
	Sediment	Sediment	Sediment	Sediment	Tar	` ` `
Client ID	1	1	2	2	4	
						1
Analyte Lab ID	100	001R	002D	002	003D	
Phenol	U	U	UD	U	UD	330
Bis (2-Chloroethyl) ether	U	U	UD	U	UD	330
2-Chlorophenol	U	U	UD	U	UD	330
1.3-Dichlorobenzene	U	Ľ	UD	Ü	UD	330
1.4-Dichlorobenzene	U	U	UD	U	UD	330
Benzyl Alcohol	U	U	UD	U	UD	330
1.2-Dichlorobenzene	U	U	UD	U	UD	330
2-Methylphenol	U	Ü	UD	U	UD	330
bis (2-Chloroisopropyl) ether	U	U	UD	U	UD	330
4-Methylphenol	U	U	UD	Ŭ	UD	330
N-Nitroso-di-n-propylamine	U	U	UD	U	UD	330
Hexachloroethane	U	U	UD	U	UD	330
Nitrobenzene	Ü	Ü	UD	U	UD	330
Isophorone	U	U	UD	U	UD	330
2-Nitrophenol	U	U	UD	U	UD	330
2.4-Dimethylphenol	U	U	UD	U	UD	330
Benzoic Acid	U	U	UD	Ū	UD	1600
bis (2-Chloroethoxy) methane	U	U	UD	U	UD	330
2,4-Dichlorophenol	U	U	UD	U	UD	330
1,2,4-Trichlorobenzene	U	U	UD	U	UD	330
Naphthalene	U	U	UD	U	UD	330
4-Chloroaniline	U	U	UD	Ü	UD	330
Hexachlorobutadiene	U	U	UD	11	UD	330
4-Chloro-3-methylphenol	U	U	UD	U	UD	660
2-Methylnaphthalene	U	U	UD	U	UD	330
Hexachlorocyclopentadiene	U	U	UD	U	UD	330
2.4.6-Trichlorophenol	U	U	UD	U	UD	330
2.4.5-Trichlorophenol	U	U	UD	U	UD	1600
2-Chloronapthalene	Ü	U	UD	U	UD	330
2-Nitroaniline	U	U	UD	U	UD	1600
Dimethylphthalate	U	U	UD	Ü	UD	330
Acenaphthylene	U	U	UD	U	UD	330
2,6-Dinitrotoluene	U	U	UD	U	UD	330

PQL = Practical Quantitation Limit

193 - I

4q., p

To obtain sample-specific quantitation limit, multiply the PQL by the Dilution Factor.

AEN Job#: L72980430

Project ID: S05-9802-002

Matrix: Soil
Method: 8270

EPA Target Compound List (TCL)

Base Neutral Acids

ug/Kg-Dry Weight

P - 6 - 11	720/	720/	740/	740/	000/	
Percent Solids	73%	73%	74%	74%	90%	4
Dilution Factor	l	1	2	11	50]
Method Blank	SS0223	SS0223	SS0223	SS0223	SS0223	PQL
	Sediment	Sediment	Sediment	Sediment	Tar	{
Client ID	1	1	2 .	2	4	
	· · · · · · · · · · · · · · · · · · ·					1
Analyte Lab ID	001	001R	002D	002	003D	
3-Nitroaniline	U	U	UD	U	UD	1600
Acenaphthene	U	U	UD	U	UĐ	330
2,4-Dinitrophenol	Ĺ	U	UD	U	UD	1600
4-Nitrophenol	Ü	U	UD	U	UD	1600
Dibenzofuran	U	U	UD	U	UD	330
2.4-Dinitrotoluene	U	U	UD	U	UD	330
Diethylphthalate	Ū_	U	UD	U	UD	330
4-Chlorophenyl phenyl ether	U	U	UD	U	UD	330
Fluorene	U	Ü	UD	U	UD	330
4-Nitroaniline	U	U	UD	Ü	UD	1600
4,6-Dinitro-2-methylphenol	U	U	UD	U	UD	1600
N-Nitrosodiphenylamine (1)	U	U	UD	U	UD	330
4-Bromophenyl phenyl ether	U	U	U D	U	UD	330
Hexachlorobenzene	U	U	UD	U	UD	330
Pentachlorophenol	U	U	UD	U	UD	1600
Phenanthrene	U	U	UD	ט	UD	330
Anthracene	U	U	UD	U	UD	330
Di-n-butylphthalate	U	U	UD	U	UD	330
Fluoranthene	U	Ü	UD	U	UD	330
Pyrene	U	Ľ	UD	U	UD	330
Butyl benzyl pnthalate	ĹĹ	U	UD	U	UD	330
3.3'-Dichlorobenzidine	Į!	U	UD	U	UD	1600
Benzo (a) anthracene	<u> </u>	U	UD	U	UD	330
Chrysene	(ا	U	UD	U	UD	330
bis (2-ethylhexyl) phthalate	U	U	UD	U	UD	330
Di-n-octylphthalate	U	U	UD	U	UD	330
Benzo (b) fluoranthene	U	Ü	UD	U	UD	330
Benzo (k) fluoranthene	U	U	UD	U	UD	330
Benzo (a) pyrene	U	U	UD	U	UD	330
Indeno (1.2,3-cd) pyrene	U	U	UD	U	UD	330
Dibenz (a,h) anthracene	U	U	UD	บ	UD	330
Benzo (g,h,i) perylene	U	Ū	UD	U	UD	330
Date Sampled	2/17/98	2/17/98	2/17/98	2/17/98	2/17/98	
Date Extracted	2/23/98	2/23/98	2/23/98	2/23/98	2/23/98	
Date Analyzed	2/25/98	2/26/98	2/24/98	2/25/98	2/25/98	

(1) - Cannot be separated from Diphenylamine

PQL = Practical Quantitation Limit

 $To\ obtain\ sample-specific\ quantitation\ limit,\ multiply\ the\ PQL\ by\ the\ Dilution\ Factor.$

AEN Job#: L72980430 Project ID: S05-9802-002

Matrix: Soil
Method: 8270

EPA Target Compound List (TCL) Base Neutral Acids ug/Kg-Dry Weight

Percent Solids	90%	57%	57%	59%	93%	T
Dilution Factor	25	50	10	1	50	1
						1
Method Blank	SS0223	SS0223	SS0223	SS0223	SS0223	PQL
	Tar	Sediment	Sediment	Sediment	Tar	
Client ID	1	3	3	4	5	
			-			1
Analyte Lab ID	003	004D	004	005	00 6 D	
Phenoi	UD	UD	UD_	U	UD	330
Bis (2-Chloroethyl) ether	UD	UD	UD	U	ÜD	330
2-Chlorophenol	UD	UD	UD	U	UD	330
1,3-Dichlorobenzene	UD	UD	UD	U	UD	330
1,4-Dichlorobenzene	UD	UD	UD	U	UD	330
Benzyl Alcohol	UD	UD	UD	Ü	UD	330
1,2-Dichlorobenzene	UD	UD	UD	U	UD	330
2-Methylphenol	UD	UD	UĐ	U	UD	330
bis (2-Chloroisopropyl) ether	UD	UD	U D _	U	UD	330
4-Methylphenol	UD	UD	UD	U	UD	330
N-Nitroso-di-n-propylamine	UD	UD	UD	U	UD	330
Hexachloroethane	UD	UD	UD	U	UD	330
Nitrobenzene	UD	UD	UD	U	UD	330
Isophorone	UD	UD	UD	U	UD	330
2-Nitrophenol	UD	ÜD	UD	U	UD	330
2,4-Dimethylphenol	UD	UD	UD	U	UD	330
Benzoic Acid	UD	UD	UD	U	UD	1600
bis (2-Chloroethoxy) methane	UD	UD	UD	U	UD	330
2,4-Dichlorophenol	UD	UD	UD	Ü	UD	330
1,2,4-Trichlorobenzene	UD	UD	UD	Ü	UD	330
Naphthalene	UD	UD	UD	Ü	UD	330
4-Chloroaniline	UD	UD	UD	U	ŪD	330
Hexachlorobutadiene	UD	UD	UD	Ü	UD	330
4-Chloro-3-methylphenol	UD	UD	UD	U	UD	660
2-Methylnaphthalene	UD	UD	UD	Ú	UD	330
Hexachlorocyclopentadiene	UD	UD	UD	U	UD	330
2,4,6-Trichlorophenol	UD	ÜD	UD	U	UD	330
2,4,5-Trichlorophenol	UD	UD	UD	U	UD	1600
2-Chloronapthalene	UD	UD	UD	U	UD	330
2-Nitroaniline	UD	UD	UD	U	UD	1600
Dimethylphthalate	UD	UD	UD	Ŭ	UD	330
Acenaphthylene	UD	UD	UD	U	ŪD	330
2.6-Dinitrotoluene	UD	UD	UD	U	UD	330

PQL = Practical Quantitation Limit

: #1

4 4

To obtain sample-specific quantitation limit, multiply the PQL by the Dilution Factor.

AEN Job#: L72980430 Project ID: S05-9802-002

Matrix: Soil
Method: 8270

EPA Target Compound List (TCL) Base Neutral Acids ug/Kg-Dry Weight

Percent Solids	93%	76%	66%		
Dilution Factor	25	1	1	1	
Ditution 1 actor		1	<u> </u>		
Method Blank	SS0223	SS0223	SS0223	SS0223	PQL
Wethou Diank	Tar	Sediment	Sediment	Method	
Client ID	5	5	6	Blank	
		<u> </u>		Blank	
Analyte Lab ID	006	007	008	SS0223	
3-Nitroaniline	UD	Ü	U	U	1600
Acenaphthene	UD	U	U	U	330
2.4-Dinitrophenol	UD	Ú	Ü	U	1600
4-Nitrophenol	UD	U	U	U	1600
Dibenzofuran	UD	U	U	U	330
2,4-Dinitrotoluene	UD	U	U	U	330
Diethylphthalate	UD	U	U	U	330
4-Chlorophenyl phenyl ether	UD	Ü	U	U	330
Fluorene	UD	U	U	Ŭ	330
4-Nitroaniline	UD	U	U	U	1600
4.6-Dinitro-2-methylphenol	UD	Ü	U	U	1600
N-Nitrosodiphenylamine (1)	UD	U	U	U	330
4-Bromophenyl phenyl ether	UD	U	U	U	330
Hexachlorobenzene	UD	U	U	U	330
Pentachlorophenol	UD	U	U	U	1600
Phenanthrene	UD	U	Ü	U	330
Anthracene	UD	U	U	U	330
Di-n-butylphthalate	UD	U	U	U	330
Fluoranthene	UD	U	U	U	330
Pyrene	UD	U	Ü	U	330
Butyl benzyl phthalate	UD	U	Ü	U .	330
3,3'-Dichlorobenzidine	UD	U	U	U	1600
Benzo (a) anthracene	UD	U	U	U	330
Chrysene	UD	U	U	U	330
bis (2-ethylhexyl) phthalate	UD	U	U	U	330
Di-n-octylphthalate	UD	U	U	U	330
Benzo (b) fluoranthene	UD	U	U	U	330
Benzo (k) fluoranthene	UD	U	U	U	330
Benzo (a) pyrene	UD	U	U	U	330
Indeno (1,2,3-cd) pyrene	UD	U	U	U	330
Dibenz (a,h) anthracene	UD	U	U	U	330
Benzo (g,h.i) perylene	UD	U	U	U	330
Date Sampled	2/17/98	2/17/98	2/17/98		
Date Extracted	2/23/98	2/23/98	2/23/98	2/23/98	
Date Analyzed	2/26/98	2/24/98	2/24/98	2/24/98	

^{(1) -} Cannot be separated from Diphenylamine

PQL = Practical Quantitation Limit

1.5-4

To obtain sample-specific quantitation limit, multiply the PQL by the Dilution Factor.

AEN Job#: L72980430 Project ID: S05-9802-002

Matrix: Soil
Method: 8270

EPA Target Compound List (TCL) Base Neutral Acids ug/Kg-Dry Weight

Percent Solids	90%	57%	57%	59%	93%	
Dilution Factor	25	50	10	1	50	4
		 	· · · · ·			1
Method Blank	SS0223	SS0223	SS0223	SS0223	SS0223	PQL
	Tar	Sediment	Sediment	Sediment	Tar	1 - 4-
Client ID	4	3	3	4	5	
				 		1
Analyte Lab ID	003	004D	004	005	006D	
3-Nitroaniline	UD	UD	UD	U	UD	1600
Acenaphthene	UD	UD	UD	U	UD	330
2.4-Dinitrophenol	UD	UD	UD	U	UD	1600
4-Nitrophenol	UD	L'D	UD	U	UD	1600
Dibenzofuran	UD	UD	UD	U	UD	330
2.4-Dinitrotoluene	UD	UD	UÐ	U	UD	330
Diethylphthalate	UD	UD	UD	U	UD	330
4-Chlorophenyl phenyl ether	UD	UD	UD	U	UD	330
Fluorene	UD	UD	UD	U	UD	330
4-Nitroaniline	UD	UD	UD	U	UD	1600
4.6-Dinitro-2-methylphenol	UD	UD	UD	U	UD	1600
N-Nitrosodiphenylamine (1)	UD	UD	UD	U	UD	330
4-Bromophenyl phenyl ether	UD	UD	UD	U	UD	330
Hexachlorobenzene	UD	UD	UD	U	UD	330
Pentachlorophenol	UD	UD	UD	U	UD	1600
Phenanthrene	UD	UD	UD	U	UD	330
Anthracene	UD	UD	UD	U	UD	330
Di-n-butylphthalate	UD	UD	UD	U	UD	330
Fluoranthene	UD	UD	UD	U	UD	330
Pyrene	UD	UD	UD	U	UD	330
Butyl benzyl phthalate	UD	UD	UD	U	UD	330
3,3'-Dichlorobenzidine	UD	UD	UD	Ŭ	UD	1600
Benzo (a) anthracene	UD	UD	UD	U	UD	330
Chrysene	UD	UD	UD	U	UD	330
bis (2-ethylhexyl) phthalate	UD	UD	UD	Ü	UD	330
Di-n-octylphthalate	UD	UD	UD	U	UD	330
Benzo (b) fluoranthene	UD	UD	UD	U	UD	330
Benzo (k) fluoranthene	UD	UD	UD	U	UD	330
Benzo (a) pyrene	UD	UD	UD	U	UD	330
Indeno (1,2,3-cd) pyrene	UD	UD	UD	U	UD	330
Dibenz (a,h) anthracene	UD	UD	UD	U	UD	330
Benzo (g,h.i) perylene	UD	UD	UD	U	UD	330
Date Sampled	2/17/98	2/17/98	2/17/98	2/17/98	2/17/98	
Date Extracted	2/23/98	2/23/98	2/23/98	2/23/98	2/23/98	
Date Analyzed	2/25/98	2/24/98	2/25/98	2/26/98	2/25/98	

^{(1) -} Cannot be separated from Diphenylamine

 $To\ obtain\ sample-specific\ quantitation\ limit,\ multiply\ the\ PQL\ by\ the\ Dilution\ Factor.$

PQL = Practical Quantitation Limit

AEN Job#: L72980430 Project ID: S05-9802-002

Matrix: Soil
Method: 8270

EPA Target Compound List (TCL) Base Neutral Acids ug/Kg-Dry Weight

Pe	ercent Solids	93%	76%	66%	T	
	Dilution Factor	25	1	1	1	
	Diacion ructor		, ` 	<u> </u>		
	Method Blank	SS0223	SS0223	SS0223	SS0223	PQL
		Tar	Sediment	Sediment	Method	
	Client ID	5	5	6	Blank	
				-		
Analyte	Lab ID	006	007	008	SS0223	
Phenol		UD	U	U	U	330
Bis (2-Chloroethyl)	ether	UD	U	U	U	330
2-Chlorophenol		UD	U	U	U	330
1,3-Dichlorobenzene	:	UD	U	U	U	330
1.4-Dichlorobenzene	2	UD	U	U	U	330
Benzyl Alcohol		UD	Ü	U	U	330
1,2-Dichlorobenzene		UD	U	U	U	330
2-Methylphenol		UD	U	U	U	330
bis (2-Chloroisoprop	oyl) ether	UD	U	U	U	330
4-Methylphenoi		UD	Ü	U	U	330
N-Nitroso-di-n-prop	ylamine	UD	U	U	U	330
Hexachloroethane		UD	U	Ü	U	330
Nitrobenzene		UD	U	U	U	330
Isophorone		UD	U	U	U	330
2-Nitrophenol		UD	U	U	U	330
2.4-Dimethylphenol		UD	U	U	U	330
Benzoic Acid		UD	U	U	U	1600
bis (2-Chloroethoxy)) methane	UD	U	U	U	330
2.4-Dichlorophenol		UD	U	U	U	330
1,2,4-Trichlorobenze	ene	UD	U	U	U	330
Naphthalene		UD	U	U	U	330
4-Chloroaniline		UD	U	Ü	U	330
Hexachlorobutadien	t	UD	Ü	U	U	330
4-Chloro-3-methylpi	henol	UD	U	Ū	U	660
2-Methylnaphthalen	e	UD	U	U	U	330
Hexachlorocyclopen	tadiene	UD	U	U	U	330
2,4,6-Trichloropheno		UD	U	U	U	330
2,4,5-Trichloropheno	ol	UD	U	Ü	U	1600
2-Chloronapthalene		UD	U	U	U	330
2-Nitroaniline		UD	U	U	U	1600
Dimethylphthalate		UD	U	U	U	330
Acenaphthylene		UD	U	U	U	330
2.6-Dinitrotoluene		UD	U	U	U	330

PQL = Practical Quantitation Limit

To obtain sample-specific quantitation limit, multiply the PQL by the Dilution Factor.

IEA Job#: L72980430 Project ID: S05-9802-002

Polarized Light Micropscopy Results

Lab Sample ID: 003 Matrix: Soil
Client ID: TAR 4 Sample Date: 2/17/98

% Type of Asbestos Non-Asbestos Date Analyzed

Components

U 20-25% Cellulose 2/24/98

70-00% Binder

Lab Sample ID: 006 Matrix: Soil
Client ID: TAR 5 Sample Date: 2/17/98

% Type of Asbestos Non-Asbestos Date Analyzed

Components

U 35-40% Cellulose 2/24/98

60-65% Binder

IEA Job#: L72980430
Project ID: S05-9802-002

Wet Chemistry Analytes

Lab Sample ID: Client ID:	001 Sediment 1			Matrix: Sample Date:	
Analyte	Method	Result	PQL	Units	Date Analyzed
Total Petroleum Hydrocarbons	418.1	84.8	.10.0	mg/Kg	3/5/98
Lab Sample ID: Client ID:	002 Sediment 2			Matrix: Sample Date:	
Analyte	Method	Resuit	PQL	Units	Date Analyzed
Total Petroleum Hydrocarbons	418.1	72.1	10.0	mg/Kg	3/5/98
Lab Sample ID: Client ID:	003 Tar 4			Matrix: Sample Date:	
Analyte	Method	Result	PQL	Units	Date Analyzed
Total Petroleum Hydrocarbons	418.1	47200	10.0	mg/Kg	3/5/98
Lab Sample ID:	004			Matrix:	
Client ID:	Sediment 3			Sample Date:	2/17/98

Result

979

PQL

10.0

Units

mg/Kg

Date Analyzed

3/5/98

Method

418.1

Analyte

Total Petroleum Hydrocarbons

Appendix C

RCMS Cost Estimate

 $1 | \dots | J^{\underline{p}}$

IEA Job#: L72980430
Project ID: S05-9802-002

Wet Chemistry Analytes

005 Sediment 4			Matrix: Sample Date:	
Method	Result	PQL	Units	Date Analyzed
418.1	55.4	10.0	mg/Kg	3/5/98
006 Tar 5				
Method	Result	PQL	Units	Date Analyzed
418.1	26900	10.0	mg/Kg	3/5/98
007 Sediment 5				
Method	Result	PQL	Units	Date Analyzed
418.1	U	10.0	mg/Kg	3/5/98
008		· · · · · · · · · · · · · · · · · · ·		
	Method 418.1 006 Tar 5 Method 418.1 007 Sediment 5 Method 418.1	Method Result 418.1 55.4 006 Tar 5 Result 418.1 26900 007 Sediment 5 Result 418.1 U 008 U	Method Result PQL 418.1 55.4 10.0 006 Tar 5 PQL Method Result PQL 418.1 26900 10.0 Method Result PQL 418.1 U 10.0 008 10.0 10.0	Method Result PQL Units 418.1 55.4 10.0 mg/Kg 006 Tar 5 Matrix: Sample Date: Method Result PQL Units 418.1 26900 10.0 mg/Kg 007 Sediment 5 Sample Date: Method Result PQL Units 418.1 U 10.0 mg/Kg 008 Matrix:

Method

418.1

Analyte

Total Petroleum Hydrocarbons

Result

U

PQL

10.0

Units

mg/Kg

Date Analyzed

3/5/98

Page: 1

Contractor Equipment by CLIN

Projection Name: Celotex (CERCLA) Date: 06/02/98

Projection Type: Initial

*****			=				=====	======		.=========		
		Ctr.	Hrs/		Reg	Mob	Stby	Decon	Task	Task	Projected	Total
CLIN	Equipment Description	Code	Da ys	Qty	Days	Days	Days	Days	Code	Description	Cost	Cost
10910	Car-Passenger	SUP5	10.0	1	7	0	0	0	03	Disposal	207	237
13610	Fickup-2 wheel drive	SUP5	10.0	1	7	0	0	0	03	Disposal	271	271
39 52 0	Uni Loader-w/ forks	SUP5	13.0	1	7	Э	0	0	03	Disposal	582	5.32
50110	Meter/Monitor-Explosion	SUP5	10.0	1	7	0	0	0	03	Disposal	52	5.2
50120	Meter/Monitor-ENu (PID)	SUP5	13.0	1	7	0	0	0	03	Disposal	123	123
50125	Meter/Monitor-CVA (FID)	SUP5	10.0	1	7	0	0	0	03	Disposal	194	194
50130	Meter/Monitor-Cxygen	SUP5	10.0	1	7	0	0	0	03	Disposal	129	129
	Barrel-Crusher	SUP5	10.0	1	7	0	0	0	03	Disposal	1293	1293
											=======	
									(Equ	ipment Totals:)	2,851	2,851
						(Inclu	ding C	ontract	or Con	tingency:20.00%)		3,421
		(Including Site Contingency:15.00%)								3,849		

Government Equipment by CLIN

Projection Name: Celotex (CERCLA)

Date: 06/02/98

Projection Type: Initial

223272		Ch					0-b	D				
CLIN	Equipment Description		Hrs/ Days	Otv	Reg Davs	Mob Days	-	Decon		Description	Projected Cost	Total Cost
			,-			5475		<i></i>				
10910	Car-Passenger	EPA	10.0	1	7	0	0	0	03	Disposal	0	0
								•				
13620	Pickup-4 wheel drive	TAT	10.0	1	7	0	0	0	03	Disposal	0	0
									(Equ	ipment Totals:)	0	

(Including Site Contingency:15.00%)

0

Page: 1

Page: 1

Contractor Other Direct Costs (ODC)

Projection Name: Celotex (CERCLA)

Date: 06/02/98

Projection Type: Initial

	Ctr. Ver		Unit				Task	Projected	Total
Description		e Ccst Type	Cost	Units	Qty		Description	Cost	Cost
85gal steel cvrpacks	SUPE	Disposal	53.57	Each	25.0	03	Disposal	1435	1435
Asbestos Pisposal	SUPS	Disposal	500.00	Each	1.0	03	Disposal	536	536
Fuel-Auto	SUP5	Fuel	1.15	Gal	70.0	03	Disposal	86	96
Lodging	S UPS	Lodging	1750.00	Bulk	1.0	03	Disposal	1753	1750
Perdiem	SUP5	Perdiem	1050.00	Bulk	1.0	03	Disposal	1350	1050
₽₽ E	SUP5	Personal Protection	85.00	Each	100.0	03	Disposal	9108	9108
Profile Analysis	SUP5	Analysis	600.00	Each	3.0	03	Disposal	1929	1929
e Approval Fee	SUP5	Analysis	500.00	Each	3.0	03	Disposal	1607	1607
Rolloff Box/Asbestos	SUP5	Disposal	400.00	Each	1.0	03	Disposal	429	429
								=======	********
							(ODC Totals:)	17,930	L7,930
				(Includ	ing Conti	ractor	r Contingency:20.30%)		21,516
					Including	g Site	e Contingency:15.00%)		24,16

1 1 1

Government Personnel by CLIN

	Projection	Name:	Celotex ((CERCLA)						Date: 06/02	1/98	
	Projection	Туре :	Initial									
		=====	========		========				=====			
		Ctr.	Regular	O.T.	Regular	O.T.		No. of	Task	Task	Projected	Total
CLIN	Job Descript.ion	Code	Hrs/Day	Hrs/Day	Rate	Rate	Qty	Days	Code	Description	Cost	Cost
S1-05-01	On Scene Coordinator	EPA	3.0	2.0	30.00	30.00	1 .	7	03	Disposal	5817	5817
S4-15-01	Engineer / Civil	TAT	8.0	2.0	35.00	35.00	1	7	03	Disposal	2450	2450
												=======
									(Per	rsonnel Totals:)	8,267	8,267
						1	Inch	ding Ci	to Cor	tingency.15 AASI		9 507

(Including Site Contingency:15.00%) 9,507

Page: 1

į. I

1 :

Page: 1

Government

Other Direct Costs (ODC)

Projection Name: Celotex (CERCLA) Date: 06/02/98

Frojection Type: Initial

				======		=====			====::==::==
	Ctr. Ve	nd	Unit			Task	Task	Projected	Total
Description	Code Co	de Cost Type	Cost	Units	Qty	Code	Description	Cost	Cost
Lodging	EPĀ	Lodging	350.00	Bulk	1.0	03	Disposal	350	350
Lodging	TAT	Lodging	350.00	Bulk	1.0	03	Dísposal	791	791
Perdiem	EPA	Perdiem	210.00	Bulk	1.0	03	Disposal	210	210
Perdiem	TAT	Perdiem	210.00	Bulk	1.0	03	Disposal	475	475
							(ODC Totals:)	1,826	1,826
				(Including	g Site	Contingency:15.00%)		2,100

· 1616.7

Contractor Personnel by CLIN

Page: 1

Projection Name: Celotex (CERCLA) Date: 06/02/98

Projection Type: Initial

				=======						.======================================		
		Ctr.	Regular	Ο.Τ.	Regular	O.T.		No. of	Task	Task	Projected	Total
CLIN	Job Description	Code	Hrs/Day	Hrs/Day	Rate	Rate	Qty	Days	Code	Description	Cost	Cost.
S1-05-01	Response Manager	SUP5	8.0	2.0	55.86	83.80	1	7	03	Disposaì	4609	4609
S2-05-01	Equipment Operator	SUP5	8.0	2.0	40.97	61.46	1	7	03	Disposal	3380	3380
S2-15-01	Laborer	SUP5	8.0	2.0	32.90	49.35	3	7	03	Disposal	8143	8143
											=======	
									(Per	sonnel Totals:)	16,132	16,132
						(Includ	ing C	Contract	or Con	tingency:20.00%)		19,358
						(Inclu	ding Si	te Con	tingency:15.00%)		21,778

Щ

1, 0

Cost Summary

Page: 1

Projection Name · Celotex (CERCLA) Date: 06/02/98

Projection Type · Initial Prime Contractor: EQ5

		Projection	Archive	Tota
CONTRAC	TOR			
	Personnel Cost	16132	0	16132
	Equipment Cost	2851	0	2851
	Other Direct Cost	17930	0	17930
	Total for Contractor	36913	0	36913
	Contractor Contingency:20.00%			7383
	Including Contractor Contingency			44296
	Site Contingency:15.00%			5537
	Including Site Contingency			49833
'VERNM	ENT			
1.1	Perscrinel Cost	8267	0	8267
	Equipment Cost	0	0	0
	Other Direct Cost	1826	0	1826
	Total for Government	10093	0	10093
	Site Contingency: 15.00%			1514
	Including Site Contingency			11607
מסת דבים	T TOTAL			61440

PROJECT TOTAL 61440

Page: 1

Contractor Equipment by CLIN

Projection Name: Celotex (OPA) Date: 06/02/98

Projection Type: Initial

		Ctr.	Hrs/		Reg	Mob	Stby	Decon	Task	Task	Projected	Total
CLIN	Equipment Description	Code	Days	Qty	Days	Days	Days	Days	Code	Description	Cost	Cost
10910	Car-Passenger	EQ5	10.0	2	75	0	0	0	03	Disposal	3415	3415
13610	Pickup-2 wheel drive	EQ5	10.0	3	75	0	0	0	03	Disposal	6653	6653
25540	Office-8x40	EQ5	10.0	1	75	0	0	0	03	Disposal	3049	3049
24520	Lcwbby-20 ton	SUP5	10.0	4	75	0	0	0	03	Disposal	10941	10941
30035	Attachment-HoRam-Hydraulic	SUP5	10.0	1	75	0	0	0	03	Disposal	4004	4004
30110	Backhoe-CASE 580	SUP5	10.0	1	75	0	0	0	03	Disposal	7611	7611
31040	Bulldozer-CASE 1550	SUP5	10.0	1	75	0	0	0	03	Disposal	22537	22537
	Excavator-CAT 225B LC	SUP5	10.0	1	75	0	0	0	03	Disposal	24915	24915
[⊁] 1 3557€	Loader/Track-CAT 977 4.5 cy	SUP5	10.0	1	75	0	0	0	03	Disposal	23310	23310
75 14 0	Generator-50 KW	SUP5	10.0	1	75	0	0	0	03	Disposal	4460	4460
												=======
									(Equ	ipment Totals:)	110,895	110,895
						(Iaclu	ding C	ontract	or Con	tingency:20.00%)		133,074
							(Inclu	ding Si	te Con	tingency:15.00%)		149,708

Government

Equipment by CLIN

Projection Name: Celotex (OPA) Date: 06/02/98

Projection Type: Initial

=====						=====	=====			=======================================		
		Ctr.	Hrs/		Reg	Mob	Stby	Decon	Task	Task	Projected	Total
CLIN	Equipment Description	Code	Days	Qty	Days	Days	Days	Days	Code	Description	Cost	Cost
10910	Car-Passenger	EPA	10.0	1	75	0	0	0	03	Disposal	0	0
13620	Fickup-4 wheel drive	TAT	10.0	1	75	0	0	0	03	Disposal	0	0
72320	Computer-Portable PC	TAT	10.0	1	75	0	0	0	03	Disposal	0	0
72340	Computer-Laser Printer	TAT	10.0	1	75	0	0	0	03	Disposal	0	0
73110	Copier-	TAT	10.0	1	75	0	0	0	03	Disposal	0	0
74510	Facsimile Machine-	TAT	10.0	1	75	0	0	0	03	Disposal	0	0
									(Equ	ipment Totals:)	0	

(Including Site Contingency:15.00%)

0

Page: 1

Contractor Other Direct Costs (ODC)

Projection Name: Celotex (OPA)

Date: 06/02/98

Page: 1

Projection Type: Initial

		Type: Initial	=========				=======================================		
	Ctr. Vend	ŀ	Unit			Task	Task	Projected	Total
Description	Code Code	Cost Type	Cost	Units	Qty	Code	Description	Cost	Cost
Asphalt Disposal	EQ5	Disposal	21.00	Tons	45000.0	03	Disposal	1012568	1012568
Computer	EQ5	Equipment	800.00	Each	1.0	03	Disposal	857	857
Copier	EQ5	Equipment	450.30	Each	1.0	03	Disposal	482	482
Fax Machine	EQ5	Equipment	450.30	Each	1.0	03	Disposal	482	482
Fuel-Auto	E:Q5	Fuel	1.15	Gal	750.0	03	Disposal	924	924
Fuel-Diesel	E Q5	Fuel	1.05	Gal	1000.0	03	Disposal	1125	1125
Laser Printer	EQ5	Equipment	500.00	Each	1.0	03	Disposal	536	536
व	E:Q5	Lodging	11250.00	Bulk	1.0	03	Disposal	12054	12054
_{मिर} ्च	SUP5	Lodging	31200.00	Bulk	1.0	03	Disposal	31200	31200
Perdiem	EQ5	Perdiem	6750.00	Bulk	1.0	03	Disposal	7233	7.233
Perdiem	SUP5	Perdiem	18720.00	Bulk	1.0	03	Disposal	18720	18720
PPE	SUP5	Personal Protection	85.00	Each	300.0	03	Disposal	27323	27.323
								======	
							(ODC Totals:)	1,113,504	1,1!34
				(Includ	ling Conti	acto	Contingency:20.30%)		1,336,205
				Í	(Including	g Site	e Contingency:15.30%)		1,503,230

Government

Other Direct Costs (ODC)

Projection Name: Celotex (OPA) Date: 06/C2/98

Projection Type: Initial

Description	Ctr. Vend Code Code Cost Type	Unit Cost Units	Task Task Qty Code Description	Projected Cost	Total Cost
Auto-Fuel	EPA Fuel	1.15 Gal	500.0 03 Disposal	616	616
Fuel-Autc	CAT Fuel	1.15 Gal	500.0 03 Disposal	616	616
Lodging	EPA AVIS Loaging	3750.00 Bulk	1.0 03 Disposal	3750	3750
Lodging	TAT Lodging	3750.00 Bulk	1.0 03 Disposal	8475	8475
Perdiem	EPA Perdiem	2250.00 Bulk	1.0 03 Disposal	2250	2250
Perdiem	TAT Perdiem	2250.00 Bulk	1.0 03 Disposal	5085	5085
			(ODC Totals	20,792	20,792

(Including Site Contingency:15.00%) 23,911

Page: 1

11 -1

Contractor Personnel by CLIN

Page: 1

Projection Name: Celotex (OPA) Date: 06/02/98

Projection Type: Initial

			=======			======					4============	====:====
		Ctr.	Regular	O.T.	Regular	О.Т.		No. of	Task	Task	Projected	Total
CLIN	Job Description	Code	Hrs/Day	Hrs/Day	Rate	Rate	Qty	Days	Code	Description	Cost	Cost
S1-05-01	Response Manager	EQ5	8.0	2.0	50.81	50.81	1 .	75	03	Disposal	38108	38108
S1-10-01	Foreman	EQ5	8.0	2.0	40.75	40.75	1	75	03	Disposal	32748	32748
S2-1(-)1	Field Clerk/Typist	EQ5	8.0	2.0	27.78	41.67	1	75	03	Disposal	24557	24557
S2-05-01	Equipment Operator	SJ25	8.0	2.0	40.97	61.46	4	75	03	Disposal	144871	144871
S2-15-01	Laborer	SUP5	8.0	2.0	32.90	49.35	4	75	03	Disposal	116333	116333
S2-20-01	Truck Driver	SUP5	8.0	2.0	36.68	55.03	4	6	03	Disposal	10376	10376
												========
									(Per	sonnel Totals:)	366,993	366,993
ч.						<i>(</i> -)						.40.200
						(Includ	ing C	ontract	or Con	tingency:20.00%)		440,392
						(Inclu	ding Si	te Con	tingency:15.00%)		495,441

Government

Personnel by CLIN

Page: 1

Projection Name: Celotex (OPA)

Date: 06/02/98

								======				
		Ctr.	Regular	O.T.	Regular	O.T.		No. of	Task	Task	Projected	Total
CLIN	Job Description	Code	Hrs/Day	Hrs/Day	Rate	Rate	Qty	Days	Code	Description	Cost	Cost
S1-05-01	On Scene Coordinator	EPA	3.0	2.0	53.00	53.00	1 .	75	03	Disposal	110108	110108
S4-15-31	Engineer / Civil	TAT	8.0	2.0	30.00	30.00	1	75	03	Disposal	50850	50850
									(Per	rsonnel Totals:}	== === 160,958	160,958

(Including Site Contingency:15.00%)

185,102

li.

.,,

Cost Summary

Page: 1

Frojection Name: Celotex (OPA) Date: 06/02/98

Frojection Type: Initial Prime Contractor: EQ5

		Projection	Archive	Tota
CONTRACTOR				
	Personnel Cost	366993	0	36699:
	Equipment Cost	110895	0	11089
	Other Direct Cost	1113504	0	1113504
	Total for Contractor	1591392	0	159139
	Contractor Contingency:20.00%			31827
	Incliding Contractor Contingency			190967
	Site Contingency:15.30%			23870
	Including Site Contingency			2148379
MENT				
1.	Personnel Cost	160958	0	160958
	Equipment Cost	0	0	0
	Other Direct Cost	20792	0	20792
	Total for Goverment	181750	0	181750
	Site Contingency: 15.00%			27263
	Including Sitt Contingency			209013
PROJECT TO	Y AL			2357392

 ${}^{t}\!\!\mathbf{h}_{0,j,1},$